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AdS/CFT Correspondence:

Bulk: Boundary:
e quantum gravity e guantum field theory
* negative cosmological constant Hologr'aphy * no scale (at quantum level)
e d+1 spacetime dimensions < > o d spacetime dimensions

° no gravity!
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(Maldacena ‘97)



oraphic Entanglement Entropy: (Ryu & Taka
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ire —> many detailed consistency tes
(Ryu, Takayanagi, Headrick, Hung, Smolkin, RM, F8
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¥ proof (for static geometries) (Maldacena & Lewkd®



CFT Correspondence:

BulKS Boundary:
* quant¥ e guantug zory
* negative ical constant Ho|ography °no Puantum level)
e d+1 spacetimst ns < > o e dimensions
anti-de Sitter conformal
space field theory

radius <

> energy

(Maldacé )




(Blanco, Casini, Hung & RM

First Law Of Entanglement Bhattacharya, Nozaki, Takayanagi & Ugajin)

e relative entropy:  S(p1|po) = tr(p1logp1) — tr(p1 log po)
* provides a distance measure between states:
po — reference state; p1 = perturbed state

= exp(i Ha) <— modular (or entanglement)
Hamiltonian

» S(p1lpo) = 0 and hence linear d)\ term vanishes
——> 054 = 0({Hyp)

“1t law” of entanglement entrof@jso  Tr (dp) =0 )



5S4 = 6(Hy4)

“1st law” of entanglement entropy

e generally H4is “nonlocal mess” and flow is nonlocal/not geometric

HA = ddi 1Xo:1|_O(X) Tio0 + ddi 1X ddi 1 o " 1/2?/4(X y) T10T1/23/4+ ¢

—> hence usefulness of first law is very limited, in general
e famous exception: Rindler wedge

HA = boost generator

— 2K = —277/ dd_2y dx [ZL“ Too]
A(x>0)

(by causality, A and HA describe physics throughout causal domain D)



e another exception:|CFT

5S4 = 6(Hy4)

“1st law” of entanglement entropy

in vacuum of d-dim. flat space and entangling

surface which is|S9-2

e

Hg = 2va d% ly

R? i

with radius R

-
L Ty + &

2R

(Casini, Huerta & RM)
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“1st law” of entanglement entropy:

e small excitations of CFT vacuum in d-dim. flat space and entangling
surface which is S92 with radius R:

—

. . R j¥°
+S = HHgi = 2v4 d¥i ! '
B | 4 i Y R

hTtt ()]

o |




“1st law” of entanglement entropy:

e small excitations of CFT vacuum in d-dim. flat space and entangling
surface which is S92 with radius R:

—

2+ ixg 12
HS(R;x) = 2 d" Yy ~ 1 X

Tt ()]




“1st law” of entanglement entropy:

e small excitations of CFT vacuum in d-dim. flat space and entangling
surface which is S92 with radius R:

—

2+ ixg 12
HS(R;x) = 2 d" Yy ~ 1 X

Tt ()

e boundary-to-bulk propagator in d-dim de Sitter space!
(eg, see: Xiao 1402.7080)

-
-
-
-
______
—————————
—————

'




“1st law” of entanglement entropy:

e small excitations of CFT vacuum in d-dim. flat space and entangling
surface which is S92 with radius R:

—

2+ ixg 12
HS(R;x) = 2 d" Yy ~ 1 X

Tt ()

e boundary-to-bulk propagator in d-dim de Sitter space!
(Eeg, see: Xiao 1402.7080)

ds® = — j dR? + dx?

e straightforward to show 4S5 satisfies wave equation in dS,
rdsi m? ¥3S=0 with mM°L%=jd

o NTit1 sets S at very small R and EE perturbations at larger scales
determined by the local Lorentzian propagation into dS geometry



Compare and Contrast: begin with d-dim. CFT

e Entanglement Holography: LorentZIan

undetermined —5 5 :’@ 2
o = e + ]
constant? R2
holo. coordinate = spatial coordinates in
scale (radius of ball) (d—1)-dim. time slice

e two-derivative wave equation relies only on first law of entanglement
——> appropriate states in any CFT in any number of dimensions

» AdS/CFT correspondence:

Euchdean
fixed —— 5 gl 4 ¢
= + +
by £, ds dz® h dt< + dx-
holo. coordlnate = spacetime coordinates
scale (roughly) for d-dim. CFT

» two-derivative bulk theory relies on weak curvature and weak coupling
—> holographic CFT requires strong coupling and large # of d.o.f.



Why is scale time-like?

e geometry naturally gives partial ordering of spheres

—> suggests holographic geometry should be Lorentzian
reference sphere

time slice

time-like null space-like
separated separated separated

(ordering of intervals for d=2 discussed by Czech, Lamprou, McCandlish & Sully)



Mapping deSitter < Balls?
e choose one of asymptotic boundaries of dS (eg, | © ) < time slice

e for any point x in bulk and send out future light cone to !

e intersects | * on a sphere and interior uniquely defines ‘dual’ ball B,

| " = fR = 0;%9g

@B« By

dS bulk



Mapping deSitter < Balls?
e choose one of asymptotic boundaries of dS (eg, | © ) < time slice

e for any point x in bulk and send out future light cone to !

e intersects | * on a sphere and interior uniquely defines ‘dual’ ball B,

Pt
\/ v N

y1

Y4 Vs Y7

e proposed “ordering” of spheres =
Lorentzian ordering of bulk points

* mapping/dS geometry does not imply
local dynamics respecting this structure



—

Example: +S(R;%) = 2V, ddi 1y
B

R%i jyi %j°
2R

e ()1

e consider state: JAI = JOI + 2 T (to + 14, %0)]0i

small expansion J \— regulate UV

parameter divergences
o—.d . 1
—¢ O
e expectation value is fixed by 2-pt function M0 Tt (t; %) Tt (0;0)j0i

1 (X2 (S i)

X X 1
MAj T (t; X)JAI = 2 — 'C:
Tu(GXIAL=2Cr T @tr 199" (6x2 Gtrig)? d °°

+ 0()

with Az? = |7 — 7] and A1 = |t — tp|?



Example: iS(RX‘) — 21/4_ ddi 1y R2| Jyl XjZ
| B 2R

e ()1

e consider state: JAI = JOI + 2 T (to + 14, %0)]0i

small expansion J \— regulate UV

parameter divergences
_.d .
=i ¢ 1
TE
<Ty>
ECT
P 0.04( \
e sphere expanding out ) 025
from (ty, X,) at speed !
of light N | N A A Y | e
-10 — : . 10 T
-0.02}
d=3:t =5,y = Z
Y=o ~0.04} b




Example:

+S(R;%) = 2% d¥i ly

—

R%i jyi xj°
5 2R

e ()1

e consider state: JAI = JOI + 2 T (to + 14, %0)]0i

L regulate UV

divergences

R

small expansion —/

parameter

<Ty>

eCr
0.04}

0.02}

d .
& ¢ 1

_-'|o _\J_5/

d=3:t =5,y =y,

-0.02}

-0.04f
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Comment:

* same wave equation derived from AdS/CFT correspondence

Nozaki, Numasawa, Prudenziati& Takayanagi: arXiv:1304.7100
Bhattacharya, Takayanagi: arXiv:1308.3792

* Eg, linearized Einstein eqs in AdS, implied for holographic EE

©c L0 3. 0. @biS(t;x;y;RFO

®R'R@®R' R @' @
e can be recast as d=3 deSitter wave equation:
R@"1@" R@ R@E@ 3
'"l2@&® R @ L2 @2 L2 @2 2

d’Alembertian on dS, mass term

+S(t;X;y;R) =0

* here, we see equation readily extends to any d and follows purely
from underlying conformal symmetry



Comment:

e MERA (Multi-scale Entanglement Renormalization Ansatz) provides
efficient tensor network representation of ground-state wave-function
in d=2 critical systems (Vidal)

...‘. ..‘.. ‘.. ‘..
% X 883..8..818..3.
RRRRRRRRRRRRRR R A
AN AN AN AW A A A

DoooooooooooooooooooSlioooooooooo

e has been argued that MERA has (Lorentzian) causal structure with
coarse-graining direction being time-like! (Beny: Czech etal)



Comment:

 deSitter geometry appears in recent discussions of integral geometry
and the interpretation of MERA in terms of AdS,/CFT,
(Czech, Lamprou, McCandlish & Sully: arXiv:1505.05515)

e consider space of intervals u<x<v on time slice of 2d CFT

<—> space of geodesics on 2d slice of AdS; €«—> ptsin 2d de Sitter
AdS/CFT du dv

C
motivate the choice: L% = =

3
— > ds’ = @@S, du dv

V] u
+

with Sp = % log
“hole-ography”:

volume in dS, = length in AdS; slice



Boundary data:
L2

. : 2 I 2 2¢
e recall deSitter metric: ds® = Rz | dR“ + dx

. ! 2 ; 27 - . .
e wave equation I gsi M 5= 0 jssingularasR — 0

—> 2 independent sol’s: *S "2YF (%)=R + f (¥) RY + ¢¢¢
¢ =;ij1—" ¢ =d
. Y = o, qdi 1y RODYi X .
e “1Ist |law” solution: *S(R;%) = 2% d' -y R AT ()1
B 1/d-;l
4 :
— FX)=0; )= —5=3% (%)

l 2

o NTit1 sets S at very small R and EE perturbations at larger scales
determined by the local Lorentzian propagation into dS geometry

2,2 _ . . .
e M“L° =i d:masstachyonic! — above precisely removes the
‘non-normalizable' or unstable modes



Alternate conformal frames:

. V.2 . 27 — . .
e wave equation f gsi M° 5= 0 js covariant
——> can use any coordinate system on dS geometry

e coord transformation in bulk corresponds to conformal transformation
in boundary theory — new holographic construction extends to
CFT in any conformally flat background

o for example, in cylindrical bkgd R X S%~1, time slice is S¢~1

—> wave equation in global coord’s
ds® = L?(j d¢? + cosh(¢)’d- g; 1)



Alternate conformal frames:

* recall to mapping deSitter < balls

| " = fR = 0;xg

dS bulk

A

e with flat bkgd, exterior region is infinite and outward light-sheet
‘expands’ forever but Bx becomes complementary sphere on $%¢~1
and outward light-sheet converges on antipodal point X



Alternate conformal frames:

e consider mapping deSitter « balls on Penrose diagram
B, @B B, | " = fR = 0;x%g

antipodal
point

expanding /

flat patch




Why is scale time-like?

e geometry naturally gives partial ordering of spheres

—> holographic geometry should be Lorentzian
reference sphere

time slice

 antipodal points allow space-like
for refined ordering, eg, separated



Why is scale time-like?

e geometry naturally gives partial ordering of spheres

—> holographic geometry should be Lorentzian
reference sphere

time slice

e antipodal points allow space-like space-like from B_x
for refined ordering, eg, separated & time-like from Bx
fromBx & Bx



Antipodal symmetry:
e in pure state, S(V)=S(V) ——  £S(B) = +S(B)

e on auxiliary dS geometry, antipodally even solutions: £S(X) = £S(X)

e antipodal symmetry restricts allowed boundary data:

di 1 L
242

—tgra® F (%)= | dh ty jx i ¥* f ()
| 7 *

e however, recall: F (%) = 0; f (%) / hli ()i

—  dVly i WHT (i = 0 forall

* independent constraints:

dii Ix KT (6)i = 0= d% YxxhT(%)i =  d¥ 1xj%j2 T (%)i

temporal gen of

)
total energy boost gen’s special conformal trans



Antipodal symmetry:
e on auxiliary dS geometry, antipodally even solutions: £S(X) = £S(X)
* independent constraints:

dii IxHT ()i = 0= d9 Ixx bl ()i = d¥ Ixj%j2 i ()i

temporal gen of

| ener n’ -
total energy boost gen’s special conformal trans

e vanishing total energy? —— only to first order in expansion
* some mixed states will also satisfy antipodal symmetry

e on spherical time slice:

di InHr(n)i = 0= d¥ tn n' HT (N)i

where S¢~1 parameterized by d-dimensional unit vectors n!

—> zero’th and first moments of energy density vanish



Recall example:
e consider state: JAI = JOI + 2 Ty (to + 1¢, %0))0I

small expansion J \— regulate UV

divergences

parameter
e expectation value is fixed by 2-pt function N0 Tt (t;%) Tt:(0; 0)jO0I
” 1 (X2 H (Ct+ig)D2 1
. = 2 . = . -
T (EXIAL = 2Cr - e G tr 199 (6x2; (Gt+ie)D)? d o
+ O()

with Az® = |7 - 7| and A% = |t — {o|?
e can verify above satisfies constraints — 6.5 antipodally symmetric

dii IxhT(%)i = 0= d% YxxhT(%)i =  d9 1xjxj2 T ()i

e for any pure state [) = |0) + €|p) — NTte(x)1 ° 2O i (%)JA + h:c:
—> constraints satisfied by conformal invariance of |0)



Second example:

e consider mixed state on spherical time slice (with radius r):

Yo= j0IMD] + ~ JEihE]

small expansion J \energy eigenstate
parameter with constant Tt (%)
e for ball of angular width 8,, “1t law” becomes: (Herzog)
THoo o COSULj COS " E
+S=2v, %l 5 &n® 2udu v Hi Ho
0 Sin g rdi 1. 4. 1
\ J \ J\ J
| | |
volume element bulk-to-bdry energy
propagator density

e “antipodal constraints”:  d% 'nhT(n)i 6 0;  d¥ 'nn' HT(n)i = 0

* scale set by 8,; problem at 8, = m! (where bulk pts reach!' )
——> dS propagation breaks down where nr £ ~ 6



Extension to Higher Spin Charges:

* CFT with conserved symmetric traceless currents T, ..., withs = 1

e modular Hamiltonian is flux of J12 = Tio K~ through B where KV

is conformal Killing vector that leaves dB invariant 0
— HB - d§ \]1( )

e extends to higher spin charges:

Q(S) p— d§1 \]1(8) with \]1(8) — T112WSK12 ¢¢¢Kls

e appeared in modified density matrices

4 N\

1/B » eXP | 1SQ(S) t=0

(s=1: Belin, Hung etal;
s=>3: Hijano & Kraus)




Extension to Higher Spin Charges:

e extends to higher spin charges:

Q¥ = d§' IO ith I = Tos,am K2 00K

e on t=0slice, yields:

L Mo . ... .2 1I'sj 1
. . R %
QW = (it iy TAZIL Tiy)
B
\ ' J
bdry-to-bulk propagator J
for deSitter D
. Q¥ satisfies wave equation in dS, ] <
'rgsi mz*Q(s):O - \ A AB 5
with
m*L?=j (si 1)(d+sj 2




Conclusions & Outlook:

e EE of excitations of CFT vacuum arranged in novel holographic manner

* 45 satisfies wave equation in dS, where scale plays the role of time
rdsi Mm% 3S=0 with m?L%2=;d

o NTitl sets 85 at very small R and EE perturbations at larger scales
determined by the local Lorentzian propagation into dS geometry

e for CFTs with higher spin currents, additional dynamical fields on dS

—> applies for any CFT in any d; relies only on the 15 [aw of
entanglement; does not require strong coupling or large # dof

Question: Is there a full description of CFT in terms of a local
theory of interacting fields propagating in dS spacetime?

(dS/CFT correspondence with unitary boundary CFT?)



Question: How is curvature scale in dS geometry fixed?

d—2
e in AdS/CFT, AdS scale set by coupling to gravity, ie, (L/{,P) ~ Cr

——> need to understand dynamics of dS geometry(?)

Question: How to new construction extend beyond CFT vacuum?

* how is holographic geometry modified for perturbations of EE
around excited states?

* how is holographic geometry modified for perturbations of EE
around CFT deformed by relevant operator?

——> in AdS/CFT, wave equation acquires source terms
'r 40 Mm% £S' \hOi hOi"

Bhattacharya, Takayanagi: arXiv:1308.3792



Question: How is curvature scale in dS geometry fixed?

d—2
e in AdS/CFT, AdS scale set by coupling to gravity, ie, (L/{,P) ~ Cr

——> need to understand dynamics of dS geometry(?)

Question: How to new construction extend beyond CFT vacuum?

* how is holographic geometry modified for perturbations of EE
around excited states?

* how is holographic geometry modified for perturbations of EE
around CFT deformed by relevant operator?

—> integral geometry proposal has some answers for d=2

(Czech, Lamprou, McCandlish & Sully: arXiv:1505.05515)



Comment:

 deSitter geometry appears in recent discussions of integral geometry
and the interpretation of MERA in terms of AdS,/CFT,
(Czech, Lamprou, McCandlish & Sully: arXiv:1505.05515)

e consider space of intervals u<x<v on time slice of 2d CFT

<—> space of geodesics on 2d slice of AdS; €«—> ptsin 2d de Sitter
AdS/CFT du dv

C
motivate the choice: L% = =

3
— > ds’ = @@S, du dv

V] u
+

with Sp = % log
“hole-ography”:

volume in dS, = length in AdS; slice



Question: How is curvature scale in dS geometry fixed?

d—2
e in AdS/CFT, AdS scale set by coupling to gravity, ie, (L/{,P) ~ Cr

——> need to understand dynamics of dS geometry(?)

Question: How to new construction extend beyond CFT vacuum?

* how is holographic geometry modified for perturbations of EE
around excited states?

* how is holographic geometry modified for perturbations of EE
around CFT deformed by relevant operator?

—> integral geometry proposal has some answers for d=2

CFTvacuum: L= C=3;  excited states: ds° = @@S du dv

——> motivated by connections to “hole-ography”
(Czech, Lamprou, McCandlish & Sully: arXiv:1505.05515)



Question: Interacting fields in dS spacetime?

e description with free field propagation breaks down for
large/IR scales in mixed state example
——> need to go beyond 15t law!!



Second example:

e consider mixed state on spherical time slice (with radius r):

Yo= j0IMD] + ~ JEihE]

small expansion J \ energy eigenstate |
parameter with constant Tt ()]

e for ball of angular width 8,, “1t law” becomes:

THoo o COSHLj COS " E
+S=2v, %l 5 &n® 2udu v Hi Ho ——
0 SN Ho r=r =- di 1
\ J \ J\ J
| | |
volume element bulk-to-bdry energy

propagator density

e “antipodal constraints”:  d% 'nhT(n)i 6 0;  d¥ 'nn' HT(n)i = 0

* scale set by 8; problem at 8, = ! (where bulk pts reach!' )
——> dS propagation breaks down where nr £ ~ 6



Question: Interacting fields in dS spacetime?

e description with free field propagation breaks down for
large/IR scales in mixed state example
——> need to go beyond 15t law!!

* preliminary investigation of HEE in AdS,/CFT, including terms which
are second order in the stress tensor, find interacting equation:

'r 2.7 m?2 1S = g+S2+ ¢

(with van Raamsdonk)

e do higher spin charges interact in local way in dS geometry?



Question: What about time dependence in CFT?

e so far focused on single time slice; natural to consider perturbations of
EE for all spheres throughout spacetime on any time slice & any frame

e adopt group theoretic perspective of wave equation:

—> background for spheres on fixed time slice:
SO(1;d)=50(1;dj 1) °  d-dim. deSitter space

—> background for spheres throughout spacetime:
SO(2;d)=[S0O(1;dj 1) £ SO(L;1)]
——> 2d-dimensional space
—> signature: (d,d) <— too many times?!?!

(seek guidance from AdS/CFT)



Conclusions & Outlook:

e EE of excitations of CFT vacuum arranged in novel holographic manner

* 45 satisfies wave equation in dS, where scale plays the role of time
rdsi m? #S=0 with m2L%=d

o NTitl sets 85 at very small R and EE perturbations at larger scales
determined by the local Lorentzian propagation into dS geometry

e for CFTs with higher spin currents, additional dynamical fields on dS

—> applies for any CFT in any d; relies only on the 15 [aw of
entanglement; does not require strong coupling or large # dof

Lots to explore!!
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