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This talk is based on joint work with Po-Ning Chen and Mu-Tao
Wang.

Exactly 100 years ago, Einstein accomplished one of the most
spectacular work in physics and radically changed the view of space
and time in the history of mankind. The foundation laid by Isaac
Newton on the theory of gravity was completely changed by the
theory of general relativity .

In the very successful theory of Newton, space is static and time is
independent of space . By 1905, when Einstein established special
relativity along with Poincar and others, it was realized that space
and time are linked and that the very foundation of special
relativity, and that information cannot travel faster than light, is in
contradiction with Newtonian gravity where action at a distance
was used.
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Einstein learnt from his teacher in 1908 that special relativity is
best described as the geometry of the Minkowski spacetime. He
realized gravitational potential cannot be described by a scalar
function. It should be described by a tensor. After tremendous
helps from his two friends in mathematics : Grossmann and
Hilbert, Einstein finally wrote down the famous Einstein equation:

Rµν −
1

2
Rgµν = 8πTµν .

Note that Hilbert was the first one that write down the action
principle of gravity, which plays the most important role in any
attempts to quantize general relativity. The action is given by the
total scalar curvature of the metric tensor which is considered to
be the gravitational potential. If gravity is coupled with other
matter, we simply add the matter Lagrangian.
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For a closed surface S enclosing a spacelike region D, the
Lagrangian formulation gave the definition of a surface Hamilton
which can be described as follows∫

S
N 2K + Nµpµνr

ν .

Here wν is a future time-like unit vector field along S that
corresponds to unit translation. We write wµ = N nµ + Nµ alone
the surface S , where nµ is the timelike unit normal of D restricting
to S . N is the lapse and Nµ is the shift. rµ is the space-like unit
normal orthogonal to nµ along S , and p is the second fundamental
form of D, and 2K is the mean curvature of S with respect to rµ.

Here the geometric quantities are determined by the spacelike
region D and the gauge choice of timelike vector fields along D .
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The field equation was used by Einstein to calculate the perihelion
of mercury and the light bending predicted by the Schwarzschild
solution of the Einstein equation, which was found shortly. This
was of course a great triumph of the Einstein theory of general
relativity. However, since the theory is highly nonlinear and the
geometry of space time is dynamical, the actual understanding of
Einstein equation was very difficult : even to Einstein himself.

Gravitation radiation was predicted by Einstein and later he tried
to retract the idea, although the retraction was not successful.
Einstein thought that the equation determined gravity completely.
But that is actually not true as we cannot tell what is the initial
condition for the field equation and we have difficulty to find the
boundary condition.
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There are many important problem in GR which are not solved.
Many of them need deep understanding of geometry and analysis
The first major question is the question of the structure of
singularities. Black hole appeared in Schwarzschild and Kerr
solutions .

Penrose proposed the famous question of cosmic censorship, He
claimed that for a generic space time, every singularity is hidden
behind some membrane similar to black hole appeared in the above
solutions.

The dynamical problem of the Einstein equation is still not solved
yet. It is only understood in the very weak field limit case by the
work of Christodoulou-Klainerman and Christodoulou.
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There are many important physical quantities and questions that
were understood in Newtonian mechanics. However, their
counterparts are not easy to formulate, let alone to understand!
They are largely due to the problem of gauge choice in general
relativity . This problem started even before the field equation was
written down, when Einstein attempted to use divergence free
coordinate choice .

Einstein succeeded to define total mass for an isolated physical
system, which was made precise by the famous work of
Arnowitt-Deser-Misner. It was an important quantity to measure
the whole physical system. Already Einstein found it difficult to
know properties of such total mass. It needs to be positive for the
system to be physically stable. This was finally proved by Schoen
and me in 1979.

Physical quantities are gauge independent and their relation to
geometry becomes very interesting. And we shall discuss them in
this talk.

We believe that the major problem is to understand classical
physical quantities that should appear in general relativity.
Hopefully they can help us to understand the dynamics of the
equation.
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As is well known, it is not possible to find mass density of gravity
in general relativity. The mass density would have to be first
derivative of the metric tensor which is zero in suitable chosen
coordinate at a point.

But we still desire to measure the total mass in a space like region
bounded by a closed surface.

The mass due to gravity should be computable from the intrinsic
and the extrinsic geometry of the surface.

It has been important question to find the right definition.

Penrose gave a talk on this question in my seminar in the Institute
for Advances Study in 1979.
The quantity is called quasilocal mass.
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Penrose listed it as the first major problem in his list of open
problems.

Many people, including Penrose, Hawking-Horowitz, Brown-York
and others worked on this problem and various definitions were
given.

I thought about this problem and attempted to look at it from
point of view of mathematician.
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I list properties that the definition should satisfy :

1. It should be nonnegative and zero for any closed surfaces in flat
Minkowski spacetime

2. It should converge to the familiar ADM mass for asymptotically
flat spacetime if we have a sequence of coordinate spheres that
approaches the spatial infinity of an asymptotic flat slice.

3. It should convergent to the Bondi mass when the spheres
divergent to the cut at null infinity

4. It should be equivalent to the standard Komar mass in a
stationary spacetime .
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It turns out that this is not so easy to find such a definition.

In the time symmetric case, my former student Robert Bartnik
proposed a definition which satisfies the above properties. But his
definition does not allow him to give an effective calculation of the
mass.

About 15 years ago, I was interested in how to formulate a criterion
for existence of black hole, that Kip Thorne called hoop conjecture.

The statement says that if the quasi-local mass of a closed surface
is greater than certain multiple of the diameter of the surface, then
the closed surface will collapse to a black hole. (perhaps the length
of shortest closed geodesic is a better quantity than diameter )

Hence a good definition of quasi-local mass is needed.
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I was visiting Hong Kong at that time and I lectured on related
materials.

I suggested to L. F. Tam to look at the recent work that I did on
the existence of black hole due to boundary effects of the mean
curvature. I suggested the work of Bartnik on the quasi-local mass
and his work on construction of three manifolds with zero scalar
curvature using foliation by quasi sphere. Bartnik did a remarkable
calculation turning part of prescribing scalar curvature into a
parabolic equation .

Soon afterwards, Tam told me that he generalized the statement
with Shi to sphere that is not necessary round.
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When I came back to Harvard, Melissa Liu and I generalized this
statement of Shi-Tam to spheres that are the boundary of a three
dimensional space like hyper surface in a spacetime which satisfies
the dominant energy condition.

The total mean curvature is replaced by the total integral of the
spacetime length of the mean curvature vector. This is a quantity
independent of the choice of the three manifolds that the surface
may bound. The difference between this quantity and the
corresponding quantity of the isometric embedding of the surface
into Euclidean space is positive.

I thought this should be the quasi local mass of the surface .
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Then I found out that in the time symmetric case, this was in fact
derived to be the quasi local mass by Brown-York and
Hawking-Horowitz based on Hamiltonian formulation. (Their
definition actually depend on the choice of the three manifold that
the surface bounds )

The definition of Liu-Yau is quite good as it satisfies most of the
properties mentioned above

However the mass so defined is too positive and may not be trivial
for surfaces in the Minkowski spacetime. This is also true for the
mass of Brown-York and Hawking-Horowitz.
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Hence Mu-Tao Wang and I changed the definition and considered
isometric embedding of the two dimensional surface into a
Minkowski spacetime.

Such embedding are not unique and we have to optimize the
quantities among all embeddings.
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To be precise, the Wang-Yau definition of the quasi local mass can
be defined in the following way:

Given a surface S , we assume that its mean curvature vector is
spacelike. We embed S isometrically into R3,1.

Given any constant unit future time-like vector w (observer) in
R3,1, we can define a future directed time-like vector field w along
S by requiring

〈H0,w〉 = 〈H,w〉

where H0 is the mean curvature vector of S in R3,1

and H is the mean curvature vector of S in spacetime.
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Note that given any surface S in R3,1 and a constant future
time-like unit vector wν , there exists a canonical gauge nµ (future
time-like unit normal along S) such that∫

S
N 2K0 + Nµ(p0)µνr

ν

is equal to the total mean curvature of Ŝ , the projection of S onto
the orthogonal complement of wµ .

In the expression, we write wµ = N nµ + Nµ alone the surface S .
rµ is the space-like unit normal orthogonal to nµ , and p0 is the
second fundamental form calculated by the three surface defined
by S and rµ.
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From the matching condition and the correspondence
(wµ, nµ) → (wµ, nµ), we can define a similar quantity from the
data in spacetime ∫

S
N 2K + Nµ(p)µνr

ν .

We write E (w) to be

8πE (w) =

∫
S

N 2K + Nµ(p)µνr
ν −

∫
S

N 2K0 + Nµ(p0)µνr
ν

and define the quasi-local mass to be

inf E (w)

where the infimum is taken among all isometric embeddings into
R3,1 and timelike unit constant vector w ∈ R3,1.
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The Euler-Lagrange equation (called the optimal embedding
equation) for minimizing E (w) is

divS(
∇τ√

1 + |∇τ |2
cosh θ|H| − ∇θ − V )

− (Ĥσ̂ab − σ̂ac σ̂bd ĥcd)
∇b∇aτ√
1 + |∇τ |2

= 0

where sinh θ = −∆τ

|H|
√

1+|∇τ |2
, V is the tangent vector on Σ that is

dual to the connection one-form 〈∇N
(·)

J
|H| ,

H
|H|〉 and σ̂, Ĥ and ĥ are

the induced metric, mean curvature and second fundamental form
of Ŝ in R3.

In general, the above equation should have an unique solution τ .
We prove that E (w) is non-negative among admissible isometric
embedding into Minkowski space.
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In summary, given a closed space-like 2-surface in spacetime whose
mean curvature vector is space-like, we associate an
energy-momentum four-vector to it that depends only on the first
fundamental form, the mean curvature vector and the connection
of the normal bundle with the properties

1. It is Lorentzian invariant;

2. It is trivial for surfaces sitting in Minkowski spacetime and
future time-like for surfaces in spacetime which satisfies the
local energy condition.
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Our quasi-local mass also satisfies the following important
properties:

3. When we consider a sequence of spheres on an asymptotically
flat space-like hypersurface, in the limit, the quasi-local mass
(energy-momentum) is the same as the well-understood ADM
mass (energy-momentum);

4. When we take the limit along a null cone, we obtain the
Bondi mass(energy-momentum).

5. When we take the limit approaching a point along null
geodesics, we recover the energy-momentum tensor of matter
density when matter is present, and the Bel-Robinson tensor
in vacuum.
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These properties of the quasi-local mass is likely to characterize
the definition of quasi-local mass, i.e. any quasi-local mass that
satisfies all the above five properties may be equivalent to the one
that we have defined.

Strictly speaking, we associate each closed surface not a
four-vector, but a function defined on the light cone of the
Minkowski spacetime. Note that if this function is linear, the
function can be identified as a four-vector.

It is a remarkable fact that for the sequence of spheres converging
to spatial infinity, this function becomes linear, and the four-vector
is defined and is the ADM four-vector that is commonly used in
asymptotically flat spacetime. For a sequence of spheres
converging to null infinity in Bondi coordinate, the four vector is
the Bondi-Sachs four-vector.
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It is a delicate problem to compute the limit of our quasi-local
mass at null infinity and spatial infinity. The main difficulties are
the following:

(i) The function associated to a closed surface is non-linear in
general;

(ii) One has to solve the Euler-Lagrange equation for energy
minimization.
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For (i), the following observation is useful:

For a family of surfaces Σr and a family of isometric embeddings
Xr of Σr into R3,1, the limit of quasi-local mass is a linear function
under the following general assumption that the mean curvature
vectors are comparable in the sense

lim
r→∞

|H0|
|H|

= 1

where H is the the spacelike mean curvature vector of Σr in N and
H0 is that in the image of Xr in R3,1.
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Under the comparable assumption of mean curvature, the limit of
our quasi-local mass with respect to a constant future time-like
vector T0 ∈ R3,1 is given by

lim
r→∞

1

8π

∫
Σr

[
− 〈T0,

J0

|H0|
〉(|H0| − |H|)

− 〈∇R3,1

∇τ

J0

|H0|
,

H0

|H0|
〉+ 〈∇N

∇τ

J

|H|
,

H

|H|
〉
]

dΣr

where τ = −〈T0,Xr 〉 is the time function with respect to T0.

This expression is linear in T0 and defines an energy-momentum
four-vector at infinity.
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At the spatial infinity of an asymptotically flat spacetime, the limit
of our quasi-local mass is

lim
r→∞

1

8π

∫
Σr

(|H0| − |H|) dΣr = MADM

lim
r→∞

1

8π

∫
Σr

〈∇N
−∇Xi

J

|H|
,

H

|H|
〉dΣr = Pi

where

(
M
Pi

)
is the ADM energy-momentum four-vector, assuming

the embeddings Xr into R3 inside R3,1.

28 / 61



At the null infinity, the limit of quasi-local mass was found by
Chen-Wang-Yau to recover the Bondi-Sachs energy-momentum
four-vector.

On a null cone w = c as r goes to infinity, the limit of the
quasi-local mass is

lim
r→∞

1

8π

∫
Σr

(|H0| − |H|)dΣr =
1

8π

∫
S2

2m dS2

lim
r→∞

1

8π

∫
Σr

〈∇N
−∇Xi

J

|H|
,

H

|H|
〉dΣr =

1

8π

∫
S2

2mXi dS2

where (X1,X2,X3) = (sin θ sin φ, sin θ cos φ, cos θ).
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The following two properties are important for solving the
Euler-Lagrange equation for energy minimization:

(a) The limit of quasi-local mass is stable under O(1)
perturbation of the embedding;

(b) The four-vector obtained is equivariant with respect to
Lorentzian transformations acting on Xr .

We observe that momentum is an obstruction to solving the
Euler-Lagrange equation near a boosted totally geodesics slice in
R3,1. Using (b), we find a solution by boosting the isometric
embedding according to the energy-momentum at infinity. Then
the limit of quasi-local mass is computed using (a) and (b).
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In evaluating the small sphere limit of the quasilocal energy, we
pick a point p in spacetime and consider Cp the future light cone
generated by future null geodesics from p. For any future directed
timelike vector e0 at p, we define the affine parameter r along Cp

with respect to e0. Let Sr be the level set of the affine parameter r
on Cp.

We solve the optimal isometric equation and find a family of
isometric embedding Xr of Sr which locally minimizes the
quasi-local energy.

With respect to Xr , the quasilocal energy is again linearized and is
equal to

4π

3
r3T (e0, ·) + O(r4)

which is the expected limit.
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In the vacuum case, i.e. T = 0, the limit is non-linear with the
linear term equal to

1

90
r5Q(e0, e0, e0, ·) + O(r6)

with an additional positive correction term in quadratic expression
of the Weyl curvature.

The linear part consists of the Bel-Robinson tensor and is precisely
the small-sphere limit of the Hawking mass which was computed
by Horowitz and Schmidt.

The Bel-Robinson tensor satisfies conservation law and is an
important tool in studying the dynamics of Einstein’s equation,
such as the stability of the Minkowski space
(Christodoulou-Klainerman) and the formation of trapped surface
in vacuum (Christodoulou)
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Po-Ning Chen joined in the research about four years ago and we
can now defined quasilocal angular momentum and center of
gravity

We define quasi-local conserved quantities in general relativity by
using the optimal isometric embedding to transplant Killing fields
in the Minkowski spacetime back to the 2-surface a physical
spacetime.

To each optimal isometric embedding, a dual element of the Lie
algebra of the Lorentz group is assigned. Quasi-local angular
momentum and quasi-local center of mass correspond to pairing
this element with rotation Killing fields and boost Killing fields,
respectively.
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Consider the following quasi-local energy density ρ

ρ =

√
|H0|2 + (∆τ)2

1+|∇τ |2 −
√
|H|2 + (∆τ)2

1+|∇τ |2√
1 + |∇τ |2

and momentum density j

j = ρ∇τ −∇[sinh−1(
ρ∆τ

|H0||H|
)]− αH0 + αH .

The optimal embedding equation takes a simple form:

div(j) = 0.
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The quasi-local conserved quantity of Σ with respect to an optimal
isometric embedding (X ,T0) and a Killing field K is

E (Σ,X ,T0,K ) =
(−1)

8π

∫
Σ

[
〈K ,T0〉ρ + j(K>)

]
dΣ.

Suppose T0 = A( ∂
∂X 0 ) for a Lorentz transformation A.

The quasi-local conserved quantities corresponding to
A(X i ∂

∂X j − X j ∂
∂X i ) are called the quasi-local angular momentum

and the ones corresponding to A(X i ∂
∂X 0 + X 0 ∂

∂X i ) are called the
quasi-local center of mass integrals.
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The quasi-local angular momentum and center of mass satisfy the
following important properties:

[1] The quasi-local angular momentum and center of mass vanish
for any surfaces in the Minkowski space

[2] They obey classical transformation laws under the action of the
Poincaré group.
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We further justify these definitions by considering their limits as the
total angular momentum J i and the total center of mass C i of an
isolated system. They satisfies the following important properties:
[1] All total conserved quantities vanish on any spacelike
hypersurface in the Minkowski spacetime, regardless of the
asymptotic behavior.

[2] The new total angular momentum and total center of mass are
always finite on any vacuum asymptotically flat initial data set of
order one.

[3] Under the vacuum Einstein evolution of initial data sets, the

total center of mass obeys the dynamical formula ∂tC
i (t) = pi

p0

where pν is the ADM energy-momentum four vector.
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Let me say a few more about the angular momentum as this is
perhaps of more current interest.

There were several proposals of the definition of quasilocal angular
momentum. In the axi-symmetric case, there is the Komar angular
momentum.

For a general spacetime, there are definitions proposed by Penrose,
Dougan-Mason, Ludvigsen-Vickers etc, which are based on twistor
or spinor constructions.

However, there seem to be very few criterion to justify a good
definition of angular momentum at the quasilocal level.

For quasilocal mass, essential requirements are (1) m(Σ) ≥ 0, (2)
m(Σ) = 0 for Σ ⊂ R3,1 (3) m(S∞) = ADM.

There are difficulties even for the definition of total angular
momentum of an asymptotically flat initial data set.
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Recall that (M, g , k) is an asymptotically flat initial data set if
outside a compact subset, there exists an asymptotically flat
coordinate system (x1, x2, x3) on each end, such that

g = δ + O2(r
−q) and k = O1(r

−p), r =
√∑3

i=1(x
i )2 for q > 1

2

and p > 3
2 .

The decay order (q > 1
2 , p > 3

2) guarantees that the ADM mass is
a valid definition and the positive mass theorem holds.

In addition to the ADM mass (energy-momentum), there is also a
companion definition of angular momentum that is attributed to
ADM (Ashtekar-Hansen, Christodoulou, Chrusciel, etc.)

J =
1

8π

∫
S∞

π(x i∂j − x j∂i , ν), i < j , where π = k − (trgk)g .

x i∂j − x j∂i is considered to be an asymptotically rotation Killing
field.
Note that, however, the calculation of angular momentum is more
subtle, as the expression of J diverges apparently.
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There are proposals (Regge-Teitelboim) of parity condition on
(g , k) to assure finiteness of the improper integral.

The definitions can be unphysical even when the decay order is
within the range with which the ADM mass is well-defined.

(Chen-Huang-Wang-Y.) There exist asymptotically flat spacelike
hypersurfaces in R3,1 or Sch3,1 with finite, nonzero ADM angular

momentum such that g = δ + O(r−
4
3 ) and k = O(r−

5
3 ).

(Chrusciel) If p + q > 3, then the ADM angular momentum is
finite.

To what extent is the ADM angular momentum a valid definition?
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All previous known definitions of quasilocal angular momentum
satisfy the covariant properties with respect to the Poincare group
and the consistency with Komar definition.
But there does not seem be any other effective criterion that is
relevant to general spacetime.
Proposal of a criterion: A quasilocal definition of angular
momentum is good if it gives good limit in an asymptotically flat
spacetime.

41 / 61



Suppose the ADM mass of (M, g , k) is positive, then there is a
unique, locally energy-minimizing, optimal isometric embedding of
Sr whose image approaches a large round sphere in R3.

Take the limit as r →∞ of the quasi-local conserved quantities on
Sr , we obtain (E ,Pi , J̃i , C̃i ) where (E ,Pi ) is the same as the ADM
energy-momentum.

J̃i is the new total angular momentum we defined and it may differ
from the ADM angular momentum.

We prove an invariance of angular momentum theorem in Kerr:
any strictly spacelike hypersurface in the Kerr spacetime has the
same new total angular momentum.

“Strictly spacelike” means, in Boyer-Lindquist coordinates,
t = O(cr) for |c | < 1. In particular, the new total angular
momentum vanishes for hypersurfaces in R3,1 of Sch3,1.
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The finiteness theorem of the new total angular momentum we
proved does not assume any parity condition.

In evaluating the new total angular momentum, the optimal
isometric embeddings provides the necessary correction to cancel
any unphysical terms.

In addition, the definition also satisfies

∂t J̃ = 0

along the vacuum Einstein equation.
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Note that we can take the limit along a family of large spheres to
define total angular momentum at null infinity as well.

This was previously studied by Rizzi, in which it is assumed that
the spheres converge to a round sphere and a normalization
condition that is equivalent to require that the null hypersurface is
the null cone from a point.

The optimal isometric embedding allows a valid definition of
angular momentum without imposing the above restrictive
assumptions.
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We recently compute the quasi-local mass of “spheres of unit size”
at null infinity to capture the information of gravitational radiation.

The set-up (following Chandrasekhar) is a gravitational
perturbation of the Schwarzschild spacetime which is governed by
the Regge-Wheeler equation.

We take a sphere of a fixed areal radius and push it all the way to
null infinity. The limit of the geometric data is still that of a
standard configuration and thus the optimal embedding equation
can be solved in a similar manner.

Let me discuss the result of axial perturbation in more detail.
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We consider a metric perturbation of the form

−(1− 2m

r
)dt2 +

1

1− 2m
r

dr2 + r2dθ2 + r2 sin2 θ(dφ−q2dr −q3dθ)2

The linearized vacuum Einstein equation is solved by a separation
of variable Ansatz in which q2 and q3 are explicitly given by the
Teukolsky function and the Legendre function.
In particular,

q3 = sin(σt)
C (θ)

sin3 θ

(r2 − 2mr)

σ2r4

d

dr
(rZ (−))

for a solution of frequency σ.
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After the change of variable r∗ = r + 2m ln( r
2m − 1), Z (−) satisfies

the Regge-Wheeler equation:

(
d2

dr2
∗

+ σ2)Z (−) = V (−)Z (−),

where

V (−) =
r2 − 2mr

r5
[(µ2 + 2)r − 6m],

and µ is the separation of variable constant.
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On the Schwarzschild spacetime

−(1− 2m

r
)dt2 +

1

1− 2m
r

dr2 + r2dθ2 + r2 sin2 θdφ2,

we consider an asymptotically flat Cartesian coordinate system
(t, y1, y2, y3) with y1 = r sin θ sin φ, y2 = r sin θ cos φ, y3 = r cos θ.
Given (d1, d2, d3) ∈ R3 with d2 =

∑3
i=1 d2

i , consider the 2-surface

Σd = {(d , y1, y2, y3) :
3∑

i=1

(yi − di )
2 = 1}.

We compute the quasi-local mass of Σd as d →∞.
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Denote

A(r) =
(r2 − 2mr)

σ2r3

d

dr
(rZ (−)),

the linearized optimal embedding equation of Σd is reduced to two
linear elliptic equations on the unit 2-sphere S2:

∆(∆ + 2)τ = [−A′′(1− Z 2
1 ) + 6A′Z1 + 12A]Z2Z3

(∆ + 2)N = (A′′ − 2A′Z1 + 4A)Z2Z3

where τ and N are the respective time and radial components of
the solution, and Z1,Z2,Z3 are the three standard first
eigenfunctions of S2. A′ and A′′ are derivatives with respect to r
and r2 is substituted by r2 = d2 + 2Z1 + 1 in the above equations.
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The quasi-local mass of Σd with respect to the above optimal
isometric embedding is then

1

d2

C 2(θ)

sin6 θ
{sin2(σd)E1 + σ2 cos2(σd)E2}+ O(

1

d3
)

where

E1 =

∫
S2

(1/2)
[
A2Z 2

2 (7Z 2
3 + 1) + 2AA′Z1Z

2
3 (3Z 2

2 − 1)− N(∆ + 2)N
]

E2 =

∫
S2

[
A2Z 2

2 Z 2
3 − τ∆(∆ + 2)τ

]
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In fact, the quasi-local mass density ρ of Σd can be computed at
the pointwise level. Up to an O( 1

d3 ) term

ρ = (K − 1

4
|H|2)

− (|H| − 2)2

4
+

1

d2
{1

2
|∇2N|2 + ((∆ + 2)N)2 − 1

4
(∆N)2

− 1

4
(∆τ)2 +

1

2
[∇a∇b(τaτb)− |∇τ |2 −∆|∇τ |2]}

where K is the Gauss curvature of Σd .
The first line, which integrates to zero, is of the order of 1

d and is
exactly the mass aspect function of the Hawking mass. The 1

d2

term of the quasi local mass
∫
Σd

ρ dµΣd
has contributions from

the second and third lines (of the order of 1
d2 ), the 1

d2 term of the

first line, and the 1
d term of the area element dµΣd

. The above
integral formula is obtained after performing integrations by parts
and applying the optimal embedding equation several times.
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We can also consider the polar perturbation of the Schwarzschild
spacetime in which the metric coefficients gtt , grr , gθθ, and gφφ are
perturbed in

−(1− 2m

r
)dt2 +

1

1− 2m
r

dr2 + r2dθ2 + r2 sin2 θdφ2.

The gravitational perturbation is governed by the Zerilli equation

(
d2

dr2
∗

+ σ2)Z (+) = V (+)Z (+),

where

V (+) =
2(r2 − 2mr)

r5(nr + 3m)2
[n2(n + 1)r3 + 3mn2r2 + 9m2nr + 9m3],

and n is the separation of variable constant.
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Again, we can compute the quasilocal mass of spheres of unit-size
at null infinity. The calculation is similar to the axial perturbation
case but more complicated. The result is somehow different as the
leading term is of the order 1

d (as opposed to 1
d2 for

axial-perturbation) with nonzero coefficients.

If such a linear perturbation can be realized as an actual
perturbation of the Schwarzschild spacetime, the result would
contradict the positivity of the quasilocal mass. From this, we
deduce the following conclusion:

There does not exist any gravitational perturbation of the
Schwarzschild spacetime that is of purely polar type.
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For an actual gravitational perturbation of the Schwarzschild, the
vanishing of the 1

d gives a limiting integrand that integrates to zero
on the limiting 2-sphere at null infinity.

To each closed loop on the limiting 2-sphere at null infinity, we
thus associate a non-vanishing arc integral that is of the order of
1
d , where d is the distance from the source.

We expect the freedom in varying the shape of the loop can
increase the detectability of gravitational waves.
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We have been using the Minkowski spacetime as the reference
spacetime in defining the quasi-local energy. The critical points of
the quasilocal energy are optimal isometric embeddings into R3,1.

Recently we are able to take into account of cosmological
constants and define quasilocal energy and optimal isometric
embeddings in reference to the de-Sitter (dS) or the Anti-de-Sitter
(AdS) spacetime.

We recall that for a physical surface Σ with physical data
(σ, |H|, αH). Let X be an isometric embedding of σ into R3,1 and
Σ̂ be the projection of X (Σ) into the orthogonal complement of
T0. The definition of E (Σ,X ,T0) relies on the conservation law
relating the geometries of X (Σ) and Σ̂. The optimal isometric
embedding equation is the Euler-Lagrange equation of E (Σ,X ,T0).
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Suppose Σ is a surface in R3,1 such that the projection along T 0 is
a convex surface. Let X be the identity isometric embedding of Σ.
Then of course E (Σ,X ,T 0) = 0.

The positivity theorem we proved implies that E (Σ,X ,T0) ≥ 0 for
any (X ,T0) close to (X ,T 0), and the equality holds if and only if
(X ,T0) and (X ,T 0) differ by a Lorentz transformation in R3,1.

This identifies the kernel of the linearized optimal isometric
embedding equation and allows us to solve nearby optimal
isometric embedding equation using the implicit function theorem.

Thus in any configuration close to the Minkowski spacetime such
as the large sphere limit or small sphere limit, the optimal
isometric embedding is solvable and the mass and conserved
quantities can be evaluated.
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In presence of non-zero cosmological constant, we consider the
(A)dS spacetimes in static coordinates

−Ωdt2 + gijdx idx j

where Ω is the static potential corresponding to the time function
t, and g is the metric of a space form of constant curvature.

Given a surface in the (A)dS spacetime, we can follow the integral
curve of the Killing field ∂

∂t and obtain a surface in a static slice
(t = constant), which is the analogue of the projection surface in
the Minkowski reference case.

There is also a conservation law relating the geometries of the
surface and its “projection” in the static slice.
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Thus E (Σ,X ,T0) can be defined, where Σ is a physical surface, X
is an isometric embedding into the (A)dS spacetime, and T0 is a
translating Killing field of the (A)dS spacetime.

8πE (Σ,X ,T0)

=

∫
ΩĤdΣ̂−

∫ [√
(1 + Ω2|∇τ |2)|H|2Ω2 + div(Ω2∇τ)2

− div(Ω2∇τ) sinh−1 div(Ω2∇τ)

Ω|H|
√

1 + Ω2|∇τ |2
− Ω2αH(∇τ)

]
dΣ,

where τ is the restriction of the time function of T0 to the image
of X , and Ω is the restriction of the corresponding static potential
of T0 to the image of X . Σ̂ is the surface in the static slice of T0,
which is obtained by flowing the image of X along the integral
curve of T0.
Set Ω = 1 formally, this recovers the expression of the quasilocal
energy with respect to the Minkowski reference.
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We can similarly write down the Euler-Lagrange equation as the
optimal isometric embedding equation.

The results we obtained are no longer as strong as the Minkowski
reference case. Nevertheless, we prove the following:

If Σ is a convex surface in a static slice of the (A)dS spacetime,
then the second variation of the quasilocal energy is non-negative.

We expect this is sufficient to solve the optimal isometric
embedding for configurations in a physical spacetime that is a
perturbation of the (A)dS spacetime.
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Thank you!
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