Motivation

"Improve measurement accuracy of geo-neutrino to understand internal structure of the Earth"

- Anti-neutrino is generated in the Earth’s interior

Large Detector

- Geo-neutrino is separated from reactor-neutrino

Small Detector

- Principle inspection of directional measurement application to reactor monitor

Li Liquid Scintillator (LiLS)

- Dissolved 6Li in LS

Developing Imaging Detector

- "We produced two optics" → evaluated these optics and checked individual differences

Property

- Design of Optics

Analysis

- Typical value to separate two vertex points (Requirement)

Summary & To do

- Two optics reproduce the design and have enough performance (under requirement)
- There are not individual differences
- We will think about a better method to analyze
- We will try to use the optics for other experiment

Deformation Evaluation of Mirror for Imaging Detector

Research Center for Neutrino Science, Tohoku University, Keigo Soma

Example: $Z=150$

Selection of image

$$ R^2 = \frac{\sum (x_i - \bar{x})^2 + (y_i - \bar{y})^2}{\sum z_i} $$

Image

- Image’s shape is nearly consistent
- It’s spread is slightly larger than the simulation results
- Image is distorted

International Workshop: Neutrino Research and Thermal Evolution of the Earth 2016/Oct/25~27 @ Tohoku University