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Topology of nodal sets of solutions to elliptic PDEs

Daniel Peralta-Salas

Instituto de Ciencias Matemáticas

In these lectures I will provide an introduction to the study of the topology of the nodal sets (i.e.

the zero level sets) of solutions to second-order elliptic PDEs. In the first part, I will introduce

a strategy based on two technical tools to address the analysis of these objects: Thom’s isotopy

theorem and a Runge-type global approximation theorem. This strategy was first presented in [1,2]

to study the topology of the vortex lines of solutions to the Euler equations in fluid mechanics. In

the second part, these techniques will allow us to construct solutions to a wide range of elliptic

PDEs with nodal sets of complicated (sometimes bizarre) topologies [3]. In particular, the model

elliptic equation that I will consider to illustrate the power of these tools is the Helmholtz equation

(monochromatic waves). In the last part of the lectures, I will apply these ideas in three seemingly

unrelated contexts. First, a 2001 conjecture of Sir Michael Berry about the ex istence of Schrödinger

operators in Euclidean space with eigenfunctions having nodal lines of arbitrary knot type [4];

second, the construction of bounded solutions to the Allen-Cahn equation with level sets of any

compact topology [5]; third, the study of the nodal sets of high-energy eigenfunctions of the

Laplacian on the flat torus [6].
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Introduction to linear and nonlinear tomography

Samuli Siltanen

University of Helsinki

図 1: Example of X-ray Tomography Imaging. Left: phantom containing various chemical elements

with different X-ray attenuation properties. Right: reconstruction by the FBP algorithm. See video

https://www.youtube.com/watch?v=eWwD EZuzBI.

X-ray tomography is an imaging method where an unknown physical body is photographed from

many directions using X-rays. The X-rays passing through the object lose their intensity expo-

nentially in proportion to the density of the material along the ray according to the Beer-Lambert

law. After a calibration step one arrives at the following mathematical problem: can one recover a

non-negative, compactly supported function from the knowledge of integrals of that function along

lines? Johann Radon showed in his seminal 1917 article how to do that in dimension two, when all

possible line integrals are known. Radon’s geometric reconstruction formula serves as the founda-

tion of today’s Computerized Tomography (CT) scanners in hospitals in the form of the Filtered

Back-Projection (FBP) algorithm. FBP is based on inverting the so-called Radon transform.



図 2: Example of nonlinear Electrical Impedance Tomography Imaging. Left: phantom with

resistive plastic blocks placed in salt water. Right: reconstruction by the D-bar method. See video

https://www.youtube.com/watch?v=65Zca qd1Y8.

Recently, there is growing interest in X-ray tomography imaging based on limited data. The

main reason for this is the need to limit the harmful radiation dose to the patient. Mathematically,

the problem of recovering a function from an incomplete set of line integrals is an example of a

linear ill-posed inverse problem. Ill-posedness means that the reconstruction problem is extremely

sensitive to measurement noise and modelling errors. In such situations the FBP algorithm is not

optimal. This course discusses variational regularisation methods for limited-data X-ray tomogra-

phy, including classical Tikhonov regularisation and modern sparsity-promoting algorithms. The

core idea behind these methods is complementing the insufficient measurement data by additional

information about the unknown function.

The second part of the course focuses on a nonlinear imaging method called Electrical Impedance

Tomography (EIT). In EIT one feeds harmless electric currents into a physical body through

electrodes attached to the surface of the body. The resulting electrical potentials at the electrodes

are measured, and the goal is to recover the internal electrical conductivity distribution from the

current-to-voltage measurements. EIT has promising medical applications. Since different organs

and tissues have different electric conductivities, an EIT image can show air flowing into lungs,

blood being pumped from the heart to the lungs, and potentially distinguish between two types of

stroke: bleeding in the brain and blood clot preventing blood flow in the brain.

Mathematically, EIT is modelled by the inverse conductivity problem of Calderon. The goal is



to recover the nonnegative coefficient σ of the elliptic partial differential equation (PDE)

∇ · σ∇u = 0 (0-1)

inside a simply connected domain Ω from a set of Cauchy data at the boundary ∂Ω. Often the

Cauchy data can be expressed in the form of a so-called Dirichlet-to-Neumann (DN) map Λσ.

The operator Λσ can be thought of an infinite-precision voltage-to-current map. While the PDE

(0-1) is linear, the map σ 7→ Λσ is nonlinear with no continuous inverse. The inverse problem of

calculating σ from Λσ is extremely ill-posed.

The course discusses three types of robust solution methods for the inverse conductivity problem,

each with specific strengths and weaknesses. The methods are variational regularisation, Bayesian

inversion and the so-called D-bar method. The focus is in the D-bar method. It is based on a

nonlinear Fourier transform, which offers a clear frequency-domain understanding of EIT imaging.

Presented is also a very recent discovery that connects the D-bar method with the FBP algorithm

using complex principal type operators in the sense of Duistermaat and Hörmander.

In the course, students will have an opportunity to experiment with X-ray tomography and EIT

imaging using Matlab and the open datasets

https://www.fips.fi/dataset.php

and

https://www.fips.fi/EIT_dataset.php

The collection of data can be seen in these videos, for example:

https://www.youtube.com/watch?v=eWwD EZuzBI

and

https://www.youtube.com/watch?v=65Zca qd1Y8.

Most parts of the course are based on the book Linear and Nonlinear Inverse Problems with

Practical Applications by Jennifer Mueller and Samuli Siltanen (SIAM 2012).



Some Mathematical Questions related to Geometry in
Liquid Crystals

Jinhae Park

Chungnam National University

In the Landau-de Gennes theory, molecules in liquid crystals are described by a traceless symmetric

3× 3 matrix Q and the free energy density takes the following form
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Minimizers of the Landau-de Gennes energy functional
∫
Ω
f(Q,∇Q) dx for Liquid crystals occu-

pying a domain Ω exhibit many questions of great interest. In this talk, we discuss singuraities of

different types which can be observed in minimizers. One of special properties of the Landau-de

Gennes energy is that it can describe singularities of half integer degrees which cannot be explained

by the classical Oseen-Frank energy. One can show that existence of finite many singular points

of 1
2 degree with topological boundary conditions. We also plan to talk about interface problems

between different liquid crystal phases. If time permits, we discuss some mathematical questions

which bear resemblance to de Gorge’s conjectures.



An h-adaptive Mesh Method for Optimal Control Problem

Ruo Li

Peking University

In this talk, I will introduce some numerical methods for the model optimal control problem with

an elliptic constraint equation and a distributed control variable. The optimal control problem is

discretized using classical finite element method. We applied the h-adaptive mesh method based

on an a posteriori error estimate. Different meshes can be used for control and state variables to

achieve even better efficiency.



A Discontinuous Finite Element Space by Patch
Reconstruction

Zhiyuan Sun

Peking University

In this talk, I will introduce the discontinuous Galerkin method base on patch reconstruction.The

piecewise discontinuous finite element space can be constructed on very flexible meshes by patch

reconstruction using least square problems which is adopted to numerically solve elliptic equations

using interior penalty discontinuous Galerkin method. The canonical error estimates of the inter-

polation operator in the new space and the discontinuous Galerkin approximation to the elliptic

equations are fully restored by direct numerical analysis. The numerical examples on different

usual and unusual meshes demonstrate the numerical efficiency predicted by the error estimations,

together with the flexibility of the new method.

keyword: Reconstruction, least square problem, discontinued Galerkin method, elliptic equation
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Detection and range estimation of a hidden object using the
time domain enclosure method

Masaru Ikehata

Hiroshima University

Two inverse obstacle problems using waves governed by the wave equations over a finite time

interval are considered. The problems are concerned with detection and range estimation of an

unknown obstacle embedded in a general rough background medium or placed behind a known

impenetrable obstacle. It is shown that the time domain enclosure method enables us to know

whether the obstacle exists or not by using a single wave over a finite time interval on an open ball

where the wave is generated. Moreover, if the obstacle exists, the method yields also information

about the Euclidean distance between the obstacle and the center of the open ball.

keyword: enclosure method, inverse obstacle problems, wave equation

AMS: 35R30



On direct and inverse problems involving cracks in elasticity

Hiromichi Itou

Tokyo University of Science

Crack problems in elasticity have been received great deal of attention in various fields of science and

engineering. Cracks form geometrical discontinuities that are the critical sites at which materials

fail due to stress concentration at cracks, when the body is subject to loading. One of mathematical

difficulties is how to treat such kind of the singularity (cf. [4, 7]).

In this talk, we firstly consider inverse problems for a linear crack in a linearized elasticity [4,5].

The problem is to extract information about the location and shape of an unknown crack from a

single set of the surface displacement field and traction on the boundary of a homogeneous and

anisotropic elastic plate. We explain an extraction procedure of an unknown crack by using the

enclosure method introduced by Prof. Ikehata; provided that the crack is linear, one of two end

points of the crack is known and located on the boundary of the body, a well-controlled surface

traction is given on the boundary of the body. This problem can be applied to a nondestructive

testing. Also we introduce how to extract information about the location of tips of several cracks

located on a line between two electric conductive plates from measured data which are an injecting

direct current and the resulted voltage on the accessible side of the plate [6]. The numerical and

computational procedures are now on constructing by a collaborative project with Prof. Siltanen,

Prof. Ikehata and Dr. Hauptmann.

Next, we deal with a direct problem involving a crack in nonlinear elasticity. Most of the

approaches to study fracture problems for brittle elastic solids are based on the linearized elastic

constitutive relation or the ad hoc assumptions. Within the context of linearized elasticity, stress

concentration at the crack tips leads to the singularity for the strain which contradicts the basic

concept within which the approximation is developed, namely that the displacement gradients are

sufficiently small which means the infinitesimal strain. In order to resolve this inconsistency, Prof.

Rajagopal [15, 16] propose the non-conventional framework of nonlinear elasticity with limiting

small strain. The benefit of this model implies strains are bounded uniformly over the cracked

body, even while the stresses are concentrated at the crack tip. In this model we analyze a

nonlinear crack problem subject to the non-penetration condition [11,12]. The principal difficulty

in analyzing the model concerns the fact that the stresses live only in the non-reflexive L1-space,

therefore the standard existence theorems known for nonlinear elliptic problems (e.g. [3, 14])

are not applicable to this model and it must be properly regularized, see the relevant works by

[1, 2] and references therein. Then we introduce the concept of a generalized solution, which

is described by generalized variational inequalities and coincides with the weak solution in the

smooth case. The well-posedness is proved by the construction of an approximation problem using

elliptic regularization and penalization techniques. This research is based on a joint work with Dr.

Kovtunenko and Prof. Rajagopal [8–10].

Lastly, we mention about the asymptotic behavior of the stress field around the crack tip. For



strain-limiting models, it’s an open problem (cf. [13, 17]).
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Near-limit Flame Pattern Formation and Regime Transition
under Microgravity -Experiments and Numerical Modelling-

Kaoru Maruta

Institute of Fluid Science, Tohoku University

Combustion limit including near-limit flame behavior has been studied for more than 150 years.

In early period, primary motivation was the safety of coal mine. In 1940’s, the first theoretical

description on combustion limit was presented [1] and various experiments under microgravity have

been conducted since then to date. Numerous combustion experiments have been contributing to

the understandings of fundamental physics of near-limit flames. In late 90’s, comprehensive and

complex natures of the combustion limits for deflagration wave were clarified by low-speed coun-

terflow flame experiments under microgravity [2] which realizes ideal condition for flame extinction

experiments where no natural convection induced by gravity. Apart from study on the limit of

deflagration wave, another phenomenon termed “flame ball” was first predicted by Zel’dovich in

1940’s and its existence was proved through microgravity experiments in drop towers in U.S. [3] and

Japan and eventually, space experiments in the Space Shuttle at the beginning of the 2000’s. Our

final goal is to construct comprehensive combustion limit theory which comprehensively covers the

limits of both deflagration wave and flame ball. Currently, preliminary microgravity experiments

using airplane are conducted for preparing Space experiments from 2019 and some transitions be-

tween deflagration wave and ball-like flame near the limits were successfully observed [4]. Flame

ball has essentially pattern formation nature. To interpret observed phenomena, 3D mathematical

modelling and analysis have been conducted and some results will be presented.

References

[1] Zeld̀ovich, Y. B., Zhur. Eksp. Teor. Fiz. 11, 159 (1941).

[2] Maruta, K. et al., Twenty-Sixth (Int.) Symp. Combust. 26, 1283 (1996).

[3] Ronney, P. D. Combust. Flame, 82, 1 (1990).

[4] Takase, K., et al., Combust. Flame, 160, 1235 (2013).

Combustion limit: 燃焼限界，Counterflow flame: 対向流火炎，Deflagration wave: 伝播火炎（通常
の火炎のこと），Flame ball: 火炎球（特殊燃焼現象，伝播をしない球形の定常火炎），Drop tower:

落下塔（微小重力実験のための施設）．



The Monge-Ampére equation: Classical local applications
and recent nonlocal developments

Fernando Charro

University of Coimbra

In this talk we will present the classical local Monge-Ampere equation and some of its applications

to optimal transport and differential geometry. We will discuss the degeneracy of the equation and

the challenges it poses for regularity of solutions. Finally, we will consider a nonlocal analogue of

the Monge-Ampere operator, recently introduced in a joint work with Luis Caffarelli.



A time-discrete approximate scheme for multi-phase mean
curvature flow

Yoshihiro Tonegawa

Tokyo Institute of Technology

A family of n-dimensional surfaces {Γ(t)}t≥0 in Rn+1 is called the mean curvature flow (abbreviated

by MCF) if the velocity is equal to its mean curvature at each point and time. Given a smooth

surface Γ0, one can find a smoothly moving MCF starting from Γ0 until some singularities such

as vanishing or pinching occur. The presence of singularities necessitates a weak formulation of

MCF, and there have been intensive research dealing with this aspect in the last few decades.

Among such attempts, Brakke started a theory of MCF (“Brakke flow”) inclusive of singularities

in the framework of geometric measure theory in his seminal book [1]. In particular, he developed

a general existence theory of MCF: starting from any integral varifold (with a minor technical

restriction) of any codimension, he showed that there exists a family of varifolds satisfying the

motion law of MCF in a weak sense and existing for all time. One major concern for the validity

of his existence theorem is that the proof does not guarantee the non-triviality of the solution

when Γ0 is not a smooth surface. In [3], we rectify this point of non-triviality by introducing a

few framework and also modifying Brakke’s original argument. The main existence theorem of [3]

may be stated roughly as follows.

Theorem 0.1. Suppose that Γ0 ⊂ Rn+1 is a closed countably n-rectifiable set whose complement

Rn+1 \ Γ0 equals ∪N
i=1E0,i, where E0,1, . . . , E0,N ⊂ Rn+1 are mutually disjoint non-empty open

sets and N ≥ 2. Assume that the n-dimensional Hausdorff measure of Γ0 is finite or grows at

most exponentially near infinity. Then, for each i = 1, . . . , N , there exists a family of open sets

{Ei(t)}t≥0 with Ei(0) = E0,i such that E1(t), . . . , EN (t) are mutually disjoint for each t ≥ 0 and

Γ(t) := ∪N
i=1∂Ei(t) coincides with the space-time support of a nontrivial Brakke flow starting from

Γ0. Each Ei(t) moves continuously in time with respect to the Lebesgue measure.

We may regard each Ei(t) ⊂ Rn+1 as a region of “i-th phase” at time t, and Γ(t) as the “phase

boundaries” which move by the mean curvature in a generalized sense. Some of Ei(t) shrink and

vanish, and some may grow and may even occupy the whole Rn+1 in finite time. Note that the

continuity of Ei(t) guarantees that Γ(t) ̸= ∅ at least for a short initial time interval, and Γ(t) ̸= ∅
unless Ei(t) = Rn+1 for some i.

Notion not stated clearly in Theorem 1 is that of Brakke flow, which is as follows. For simplicity,

assume Γ0 has a finite n-dimensional Hausdorff measure, Hn(Γ0) < ∞.

Definition 0.2. A Brakke flow starting from Γ0 is a family of n-varifolds {Vt}t≥0 satisfying the

following.

(1) V0 = |Γ0| =unit density varifold induced from Γ0.



(2) For L1 a.e. t ∈ R, Vt is an integral varifold with L2 generalized mean curvature vector

h(·, Vt).

(3) ∥Vt∥(Rn) is decreasing in t and
∫∞
0

∫
Rn+1 |h(·, Vt)|2 d∥Vt∥dt ≤ Hn(Γ0).

(4) For any 0 ≤ t1 < t2 < ∞ and ϕ ∈ C1
c (Rn+1 × R+;R+), we have

∥Vt∥(ϕ(·, t))
∣∣∣t2
t=t1

≤
∫ t2

t1

∫
Rn+1

{∇ϕ(·, t) + ϕ(·, t)h(·, Vt)} · h(·, Vt) +
∂ϕ

∂t
(·, t) d∥Vt∥dt.

Here, ∥V ∥ is the weight measure of V .

The property (4) is a weak form of the motion law of MCF. The property (2) allows a possibility

of having a higher (≥ 2) multiplicity representing a “folding” of surfaces (whether it happens

or not is not clear). When the multiplicity stays 1 for a.e. t > 0, we say that the flow is a

unit density flow. Almost everywhere regularity of unit density flow for general Brakke flow has

been studied originally by Brakke and is recently completed by [2, 4, 5]. If the flow is a limit of

smooth MCF, White’s regurality theory [6] gives also the almost everywhere regularity. Theorem

1 includes as a part of theorem the existence of {Vt}t≥0 satisfying the Definition 1. We may then

define a Radon measure µ on Rn+1 × R+ by dµ = d∥Vt∥dt. The claim of Theorem 1 is that

{x ∈ Rn+1 : (x, t) ∈ sptµ} = Γ(t) for all t > 0.

The proof is divided roughly into two stages, one is a construction of time-discrete approximate

flows, and the other is the proof of a suitable compactness theorem of varifolds suited for our

purpose. In each time step of the construction, there are two different kinds of motions, one is

a locally area-minimizing Lipschitz deformation and the other is a motion by smoothed mean

curvature vector. There are a number of estimates measuring the errors of approximations. For

the second stage, we prove an analogue of Allard’s compactness theorem of integral varifolds. Here

the difference is that we only have a control of smoothed mean curvature vectors of converging

integral varifolds, not the exact mean curvature vectors. To supplement this point, we have a local

area minimizing property in a small length scale. There are roughly three different length scales,

grid size for time (very small), smoothing of mean curvature vectors (small) and area-minimizing

(not so small). These differing length scales play an important role throughout the analysis.

In my talk, I will mostly concentrate on how one actually constructs the time-discrete approxi-

mate MCF. This is a joint work with Lami Kim of Tokyo Institute of Technology.
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