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Mirror symmetry

Three facets of mirror symmetry:

1 Enumerative: GW invariants via period computations.

2 Homological: Fukaya categories and coherent sheaves.

3 T-duality: SYZ duality of special Lagrangian fibrations.

We can think of (1) and (2) as “computations” of invariants of
symplectic manifolds in terms of an algebraic object.

Principle

A (singular) Lagrangian torus fibration on a sympletic manifold
determines a variety which computes all symplectic invariants.

Questions

1 What is not covered by this?

2 How to explicitly compute?
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Lagrangian torus fibrations

The theory of integrable systems says that a proper submersion
π : X → Q with Lagrangian fibres is a torus fibration.
A choice of identification of the fibre with Rn/Zn gives rise to a
coordinate chart on the base. The transition functions have
derivatives in GL(n,Z), so Q is naturally an integral affine manifold,
which determines a variety Y .

Examples

1 X is a 2-torus of area A. Q is a circle of length A. Y is the
quotient of the algebraic torus by z → TAz .

2 X is the Thurston manifold (R4/Γ with Γ nilpotent). Q is a torus

whose affine structure has monodromy

(
1 1
0 1

)
in one direction.

Y is a Kodaira surface (elliptic fibration with no section).
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Mirror Theorem

Theorem (A. arXiv:1703.07898)

If X → Q admits a Lagrangian section, then the Fukaya category
(over the Novikov field) of X embeds fully faithfully in the derived
category of coherent sheaves on Y (equivalence if Y algebraic).

If we consider points in Y as rank-1 unitary local systems on the
fibres of X → Q, then the functor assigns to a Lagrangian an object
of the derived category with fibres the vector spaces HF ∗(L,Xq).
In order to prove that these groups are indeed the fibres of a coherent
sheaf, we have to produce a complex of modules over the ring of
functions on an open cover, together with compatible equivalences
over double intersections. Fukaya constructed the local complexes of
modules via a trick that’s difficult to generalise.
We implement this local-to-global approach in a slightly different way.
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Mirror symmetry locally

Covering Q by polygons gives a cover X by symplectic domains in
T ∗T n and of Y by analytic domains of algebraic torus, so the local
question is about tori. The new point of view is to introduce objects
on the symplectic side, given by the local system corresponding to the
regular representation. Since the fibres are tori, the corresponding
Floer homology group is

k[π1T
n] ∼= k[z±1 , . . . , z

±
n ].

This works well to recover mirror symmetry between T ∗T n and (k∗)n,
but we have to complete both sides to get the desired rings.
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Singular and Immersed Lagrangians

The most interesting examples for mirror symmetry have Lagrangian
fibres which are too singular to incorporate in the Fukaya category.
The main purpose of this talk is to explain that we now have a clear
way of going around this, using only immersed Lagrangians.

Analogy to resolutions of singularities

“Resolve” singular Lagrangians by nearby immersed ones.

Immersed Lagrangian Floer homology goes back to Akaho, and
Akaho-Joyce. The main point is that the space of branes supported
on such a Lagrangian is given by a subvariety of

(C∗)n × Cm+1

where n is the rank of H1, and m + 1 is the number of
self-intersections of degree 1, and the defining equations count
holomorphic discs.
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Gross-Siebert reconstruction

Recall that integral polytopes in Rn give rise to toric varieties. Gross
and Siebert observed that the boundary Q of a polytope is equipped is
a natural singular affine structure, i.e. that the natural affine structure
on the facets can be extended to all of Q. If the polytope corresponds
to a smooth toric variety, they prove that the associated family of
Calabi-Yau hypersurfaces can be reconstructed from this structure.
Their proof has two ingredients:

1 Local models associated to singularities
2 Gluing procedure (scattering diagrams)

In fact, their approach is much more general, and the reconstruction
can be done starting with an abstract polyhedral complex with certain
normal information.

Warning

The reconstruction procedure is not completely well-defined on a
codimension 2 locus. There will be no indeterminacy on the
symplectic side.
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Mirror local models

The local models appearing in Gross-Siebert’s work arise from the
hypersurfaces Xm,n ⊂ Cm+1 × (C∗)n given by the equations:

m∏
i=0

xi = 1 +
n∑

j=1

yj

Theorem (in preparation)

The (wrapped) Fukaya category of Xm,n is equivalent to the derived
category of coherent sheaves of Xn,m.

Low dimensional examples

We recover mirror symmetry for (C∗)n in the most trivial case. The
next case is mirror symmetry between the complement of

∏n
j=0 xj = 1

in Cn+1 and the conic bundle over (C∗)n with discriminant locus the
hypersurface Hn−1 = {

∑n
j=1 yj = 1} (c.f. A-Auroux-Katzarkov).
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The SYZ fibration

The natural SYZ fibration Xm,n → Rn+m is given by

(|x0|2 − |x1|2, . . . , |xm−1|2 − |xm|2, |y1|, . . . , |yn|).

The discriminant locus of this
fibration is the product of the
image (ameoba) of Hn−1 in Rn

with an codimension 1 polyhedral
complex in Rm. SYZ mirror
symmetry amounts to the
“duality” between these two
factors.

For (n,m) = (2, 2), we get

As alluded to earlier, it is too difficult to study Floer theory for these
fibres.
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A Landau-Ginzburg model on Xm,n

Consider the projection map π : Xm,n → C given by
∏

xi . The fibre
away from 0 and 1 is the product (C∗)m × Hn−1. Sheridan used an
immersed Lagrangian sphere in Hn−1 to prove mirror symmetry for
Calabi-Yau hypersurfaces in CPn.

Taking the product with a torus in (C∗)m, we obtain a Lagrangian in
the fibre. The parallel transport with respect to curves in the base
gives Lagrangians in the total space.
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Immersed Lagrangians and singular fibres

The naive choice of circles centered around 1 gives a very singular
Lagrangian when the radius is 1. Consider a nearby immersed circle
that misses the singularity, and let Lm,n denote the parallel transport:

Theorem (in preparation)

The space of torus objects supported on Lm,n is Xn,m.

This is the immersed implementation of the SYZ conjecture that the
mirror is the space of branes supported on fibres.
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The first (non)-trivial case

Consider X0,1 = C∗. The Lagrangian L0,1 is an immersed figure 8.
There are two degree 1 intersections, so the space of bounding
cochains is a subvariety of C2

x0,x1
× C∗z . We can compute the

curvature m0 and the differential m1 of the Floer complex:

m0 = (1− z)(1− x0x1)p m1p
∨ = 1− x0x1

All isomorphism classes of torus objects arise by considering z = 1. So
the space of unobstructed non-zero branes supported on L0,1 is given
by the equation x0x1 = 1 in C2. This is X1,0.
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From group rings to based loops

Going back to the first part of the talk, HMS without corrections is
proved by constructing an object of the Fukaya category with
endomorphism algebra the group ring. This is the ring of functions on
the space of local systems.
For a general Lagrangians, the group ring has bad formal properties:
it is not smooth in the sense of non-commutative geometry. However,
the homology of the based loop space H∗ΩL is always smooth. For a
torus, this makes no difference because the universal cover is
contractible.
To put the Family Floer approach to HMS in its proper context, we
therefore need:

1 A model of H∗ΩL for embedded Lagrangians in which we can
incorporate holomorphic curve corrections.

2 A notion of H∗ΩL for immersed Lagrangians.
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Why do we care?

The usual Floer cohomology of a Lagrangian L produces a curved A∞
algebra on H∗L, with curvature in H2L, and a set of bounding
cochains in H1L which correspond to cancelling the curvature by a
change of coordinates.
It is essentially impossible to say anything useful in Floer theory if one
cannot find a non-trivial element of the space of bounding cochains.
The point of view I’m advocating is that there is a curved A∞ algebra
on H−∗ΩL, which controls all branes supported on L, and which may
be non-trivial even if there are no “finite” branes supported on L.

Corollary

If π2L = 0, then L supports an unobstructed non-zero object.

Proof.

Curvature always vanishes for a non-positively graded ring, and the
degree −1 part vanishes by assumption.
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Floer groups for pairs

Given a Lagrangian L, and a point x ∈ L, denote by ΩxL the space of
paths from the basepoint to x . We obtain a (derived) local system of
chain complexes. Complete to obtain a local system corresponding to
a free rank-1 module over ĈΩL.
For a pair of Lagrangians L0 and L1 (which intersect transversely)

CF ∗(ΩL0,ΩL1) ≡
⊕

x∈L0∩L1

Homc
k(Ĉ∗ΩxL0, Ĉ∗ΩxL1)).

More generally, we can consider local systems associated to modules
over ĈΩL.

Conjecture

There is an enlargement of the Fukaya category with these objects
and morphism spaces.
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Computation in the exact case

It is easy to construct this enlargement in the exact case by keeping
track of higher dimensional families of holomorphic discs and their
boundaries.

Lemma

There is a natural isomorphism

C∗(ΩL) ∼= C ∗(L,Homk(C∗ΩxL,C∗ΩxL)).

The proof amounts to the statement that L is the classifying space of
ΩL, so that a cellular decomposition of L gives rise to a projective
resolution of the diagonal bimodule.
In this way, we obtain an embedding of the category of (derived) local
systems on L, in this enlargement of the Fukaya category, whenever L
is exact.
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Pairs of Lagrangians

It is easier to think of a pair of Lagrangians Q0 and Q1 meeting
transversely at a point x . If X is a symplectic manifold which retracts
to Q0 ∪ Q1 (e.g. a neighbourhood), our goal is to express the Floer
theory of X in terms of Q0 and Q1.
The starting point is the previous loop space construction:

C ∗ (Q0,Hom(C∗(ΩQ0),C∗(ΩQ0)))

C ∗ (Q1,Hom(C∗(ΩQ1),C∗(ΩQ1)))

Hom(C∗(ΩxQ0),C∗(ΩxQ1))Hom(C∗(ΩxQ1),C∗(ΩxQ0))

We have two distinguished modules given by C∗(ΩQi ) on one side and
0 on the other. Let C∗(ΩQ) denote the corresponding algebra.

Theorem (A)

The algebra C∗(ΩQ) is a completion of the Floer cochains of
Lagrangians “dual” to Qi .
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