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Goal:	

• Understand	(2+1)D	TQFT	with	global	symmetry

• Motivation	from	Condensed	Matter	Physics:	understand	how	to	
characterize	distinct	gapped	quantum	many-body	phases	of	
matter

“Symmetry-enriched	topological	phases	of	matter”	(SET	states)

(e.g.	fractional	quantum	Hall	states,	quantum	spin	liquids)



Based	on:

• M.B.,	M.	Cheng,	arXiv:1706.09464

• M.B.,	P.	Bonderson,	M.	Cheng,	C.-M.	Jian,	K.	Walker,	arXiv:1612.07792

• M.B.,	P.	Bonderson,	M.	Cheng,	Z.	Wang,	arXiv:1410.4540



(2+1)D	TQFT	is	characterized	by	

• Chiral	central	charge,	c									(c	mod	8	determined	by							)C

Moore-Seiberg,	1989
Witten,	1989
Wen,	Read,	Turaev,	Kitaev,	
Walker,	Wang,…

• Unitary	Modular	Tensor	Category,		 C

Describes	braiding	and	fusion of	topologically	
non-trivial	quasiparticles

Topologically	distinct	classes	of	quasiparticles	(anyons)		ßà
isomorphism	classes	of	simple	objects	



Unitary	Modular	Tensor	Category

• Quasiparticles	types	(simple	objects)	{a,	b,	c,	…}
a⇥ b =

X

c

N c
abc• Fusion	Rules

• Fusion/Splitting	spaces:

• F-Symbols

• Braiding	(R-Symbols)



Consistency	Conditions:

Pentagon	Equation Hexagon	Equation

Gauge	Transformations:

𝐹	 → 	ΓΓ𝐹Γ%&Γ%&

𝑅	 → Γ𝑅Γ%&



The	consistent	data																																									provides	
skeletonization of	a	UMTC.	

Gauge-invariant	quantities	=	Physical	Topological	invariants

{N c
ab, F

abc
d , Rab

c }

Modular	Tensor	Category	and	Topological	states



Independently	of	G,	each	UMTC							has	its	own	group	of	
intrinsic	symmetries: Aut(C)

C

Now	consider	(2+1)D	TQFT	with	global	symmetry	group	G



'(|a, b; ci) = ua0b0

c0 |a0, b0; c0i'(a) = a0

'(F abc
d ) ' F a0b0c0

d0

'(Rab
c ) ' Ra0b0

c0

If									is	space-time	parity	preserving:

If									is	space-time	parity	reversing:



Natural	Isomorphism:

⌥(|a, b; ci) = �a�b
�c

|a, b; ci
⌥(a) = a

Equivalence	classes										(up	to	natural	isomorphism)
form	a	group	:

[']

Aut(C)

=	group	of	intrinsic	(emergent)	symmetries	of	the	TQFT

Note:	space-time	parity	preserving elements	of	
referred to as braided auto-equivalences

Aut(C)



Global	symmetry	G

a
b

c

g
ga

gb
gc

[⇢] : G ! Aut(C)

⇢g(|a, b; ci) = Ug(
ga,g b;g c)|ga,g b;g ci

Guarantees	that	all	closed	anyon
diagrams	are	G-symmetric

ga ⌘ ⇢g(a)



If	g is	space-time	parity	reversing:

⇢g(F ) = UgUgFU†
gU

†
g = F ⇤



[⇢] defines	an	element	

⇢gh = g,h⇢g⇢h

Natural	Isomorphism

Abelian	anyons (1	form	symmetry	group)

Etingof,	Nikshych,	Ostrik 2010

MB,	Bonderson,	Cheng,	Wang	2014

is	an	obstruction	to	symmetry	localization

In	general,	computing											requires	full	knowledge	of	F,	R	symbols

It	is	an	obstruction	to	the	theory	possessing	a	global
symmetry	group	G	and	an	action	 [⇢]

A = {a 2 C|da = 1}



To	proceed,	we	need	to	consider	combining the	(2+1)D	TQFT	
states	with	additional	local	degrees	of	freedom.	

In	the	absence	of	any	global	symmetry,	the	local	degrees	of	
freedom	can	be	completely	ignored.

In	the	presence of	G,	the	local	degrees	of	freedom	can	have	
non-trivial	interplay	with	the	TQFT	and	cannot	be	ignored.

⇢gh = g,h⇢g⇢h

Case	in	point:	In	general,		

g,h 6= 1



Symmetry	Localization

Ground	state	is	symmetric:	 Rg| 0i = | 0i

Consider	state	with	two	quasiparticles:

āa ga gā

U (1)
g U (2)

g

Rg

This	is	only	consistent	if																																					is	trivial

MB,	Bonderson,	Cheng,	Wang	2014



Symmetry	Fractionalization

RgRh = Rgh

Quasiparticles	can	carry projective	representations

General	Result:	Symmetry	Fractionalization

A ✓ C
Abelian anyons

U (j)
g U (j)

h 6= U (j)
gh

Even	if

Classified	by	

MB,	Bonderson,	Cheng,	Wang	2014
c.f.	Etingof,	Nikshych,	Ostrik 2010

H2 torsor



If																																				is	non-trivial	à symmetry	localization	obstruction

(2+1)D	TQFTs	with	global	symmetry	G	are partially classified	by

How	symmetries	permute	quasiparticles

Symmetry	fractionalization	not	well-defined

Characterizing	the	symmetry fractionalization class	itself	requires	
extra	data

Symmetry	fractionalization	classification
H2 torsor



(2+1)D	theory	must	exist	at	the	surface	of	a	(3+1)D	invertible	TQFT	
(i.e.	an	SPT	or	short-range-entangled	state)

If																																	is	trivial,	and	we	pick	a	symmetry	fractionalization
class,	then	the	symmetry	fractionalization	class	can	be	
anomalous.			Symmetry	fractionalization	anomaly	(’t	Hooft anomaly)

For	unitary,	space-time	parity	preserving	symmetries	G,		‘t	Hooft
anomalies	are	classified	by	

H4(G,U(1))

How	to	compute	‘t	Hooft anomaly?	

Dijkgraaf-Witten	1990;	Chen,	Gu,	Liu,	Wen	2011
Etingof,	Nikshych,	Ostrik 2010;	
Cui,	Galindo,	Plavnik,	Wang	2015

Senthil-Vishwanath 2013



If	G	contains	only	unitary	space-time	parity	preserving	symmetries:

Study	properties	of	symmetry	defects	associated	with	G

à G-crossed	braided	tensor	category

Provides	explicit	formulae	and	consistency	conditions	to	compute	all	
anomalies	and	completely	characterize	(2+1)D	TQFT	with	unitary	
space-time	parity	preserving	G

How	to	treat	space-time	reflection	symmetries?	

G-crossed	braided	tensor	categories																				TQFTs	with	G	symmetry

Etingof,	Nikshych,	Ostrik 2010;	MB,	Bonderson,	Cheng,	Wang	2014;
Cui,	Galindo,	Plavnik,	Wang	2015;	Chen,	Burnell,	Vishwanath,	Fidkowski 2015



In	the	following,	I	will	focus	on	space-time	reflection	symmetries

Develop	an	understanding	of	how	to	

1.	Characterize	symmetry	fractionalization

2.	Compute	‘t	Hooft anomalies

3.	Understand	symmetry	localization	H3 obstruction



Characterizing	symmetry	fractionalization	for	
space-time	reflection	symmetries

For time-reversal	T,	with	

If                   define 

Determines whether carries local Kramers degeneracy
i.e. local two-dimensional vector space where T2 = -1 locally

{⌘Ta } must satisfy various consistency conditions. For example:

1.	

2.	

for

ZT
2Referrred to	as	

⌘Ta ⌘Tb = ⌘Tc

⌘Tc = ✓c



Characterizing	symmetry	fractionalization	for	
space-time	reflection	symmetries

For	spatial	reflection	r	,	with	

If                   define = eigenvalue of reflection 

Reflection eigenvalue = topological invariant

Zr
2referred	to	as	



Note: In Euclidean field theory, space and time are on equal 
footing. 

I will mainly work with the Euclidean field theory and use r

Results for anti-unitary time-reversal, T, (i.e. in Lorentzian 
signature) can be obtained by replacing r with CT



{⌘ra} determines	Euclidean	path	integral	on	non-orientable	
space-times

Z(S3) = 1/D

Z
a

(RP2 ⇥ S1) =
X

r
x=x̄

S
ax

⌘r
x

Z(⌃
g

⇥ S1) =
X

x

S2�2g
0x

MB,	Bonderson,		Cheng,	Jian,	Walker	2016

Ma ⌘



Anomaly detection: Dehn twist on punctured RP2 (mobius band)

If Ma > 0 , pick a state 



Consistency requires:

If this is not satisfied —> symmetry fractionalization is anomalous!

Dehn twist is isotopic to the identity

’t	Hooft anomaly



Invertible	TQFTs	in	(3+1)D	with										or								symmetry	have	Zr
2 ZT

2

Z2 ⇥ Z2 classification

More	systematic	‘t	Hooft anomaly	calculation

Compute

Need to extend previous theories to incorporate 
action of reflection

Braided fusion categories        determine (3+1)D TQFTs

If      is modular, the associated (3+1)D TQFT is invertible
and the surface (2+1)D theory is described by 

Kapustin 2014

Crane-Yetter 1993, Walker-Wang 2012



For closed        : space of boundary conditions

complex number               to every closed  

(3+1)D TQFTs from (2+1)D TQFTs (i.e. UMTCs)

(3+1)D TQFT:  assigns  

For        with boundary, 

= set of all possible anyon diagrams in 



(3+1)D TQFTs from (2+1)D TQFTs (i.e. UMTCs)

Assign vector space                to closed  

For         with boundary:

Path integrals evaluated using gluing formula:



Every manifold has a handle decomposition

Evaluate																																														by	cut-and-glue

Every manifold has a handle decomposition

d-dimensional p-handle = Dp ⇥Dd�p

glue along Sp�1 ⇥Dd�p

CP 2 = 0handle [ 2 handle [ 4, handle

Mobius band = 0handle [ 1 handle

RP 4 = 0handle [ 1 handle [ 2 handle[ 3 handle [ 4 handle



See C. Wang, M. Levin 2016 for related conjectures
See also Tachikawa, Yonekura 2016 for spin theories

Result	of	the	computation

Non-trivial
identity:

MB,	Bonderson,		Cheng,	Jian,	Walker	2016



The	previous	formulae	(and	additional	arguments)	
imply	additional	consistency	conditions:

= ±1

P
a ✓aM

2
aP

a M
2
a

= ±1 which	implies	

is independent of       if        

1.	

2.

3.

If	any	of	these	conditions	cannot	be	satisfied,	the	(2+1)D	theory	
cannot	exist	at	the	surface	of	any	(3+1)D	invertible	TQFT.	

H3
⇢(Z2,A) obstruction	is	non-vanishing

MB,	M.	Cheng	2017



Example:	Sp(4)2 Chern-Simons	theory

This	is	a	time-reversal	invariant	TQFT	

All	correlation	functions	are	time-reversal	invariant

But:	

What	happened?

Aharony,	Benini,	Hsin,	Seiberg 2017

 + ⇥  + = 1 + �1 + �2

✏⇥ ✏ = 1, ✏⇥ �i = �i, ✏⇥  + =  �

�1 ⇥ �2 = �1 + �2

�i ⇥ �i = 1 + ✏+ �min(2i,5�2i)



Example:	Sp(4)2 Chern-Simons	theory

By	direct	computation,	

is	non-trivial	

Previous	conditions	are	violated:

can	only	be	integer	if	

But	then	

1.

2.		

3.		



Looking	at	Sp(4)2 CS	theory	more	closely

Start	with	SU(5)1 CS	theory

5	particle	types	[	j	],			j	=	0,..,4	(mod	5)

Possesses												symmetry:				ZT
4

Gauge Consider	adding	Dijkgraaf-Witten	term
H3(Z2, U(1)) = Z2

With	DW	term:	Result	is	Sp(4)2 CS	theory

Without	DW	term:	Result	is	a	new	obstruction-free	theory	Sp(4)2V



Sp(4)2 CS	theory

✏ is	the	T2 gauge	charge.	Thus,	local	T2	value	is	-1:

⌘T✏ = �1

However,	we	also	require		 ⌘T✏ = ✓✏ = +1

N ✏
 +,T +

= 1because	



Sp(4)2V theory

Now,	we	no	longer	require ⌘T✏ = ✓✏ = +1

because	 N ✏
 +,T +

= 0

There	are	no	conflicting	constraints	on	⌘T✏
⌘T✏ = �1



The	difference	between	the	obstruction-free	theory	Sp(4)2V and	
the	obstructed	Sp(4)2 CS	theory	was	the	DW	term

Recall	that								gauge	theory	with	a	DW	term	is	equivalent
to	the	“doubled	semion”	(DS)	theory:	U(1)2 x	U(1)-2	 CS	theory

Z2

DS	theory	contains	the	particles	{1,	s,	s’,	b	=	s	x	s’}

Sp(4)2 = (Sp(4)_2 ⇥DS)/(1 ⇠ b✏)

⌘T✏ = �1 ⌘Tb = �1Since we	must	have	

But																								is	inconsistent	with	the	requirement		⌘Tb = �1

⌘Tb = ✓b = 1 which	holds	because	 N b
sTs = 1

This	is	the	heart	of	the	problem



Thus	a	general	way	to	obtain	a	theory	with	a										H3 obstruction	
is	to	start	with	a	theory	with								symmetry,	and	
gauge							while	adding	a	DW	term	for	the							gauge	field		

ZT
2

ZT
4

T2 T2

All	examples	we	have	can	be	obtained	this	way

(e.g.	also	SO(4)4 CS	theory,	and	infinite	family	of	other	examples)



Resolutions	of	the	H3 obstruction

1.	Enlarge	the	symmetry	from											to							

3.	View	the	theory	not	as	a	true	(2+1)D	theory,	but	“pseudo-
realized”	at	the	surface	of	a	(3+1)D	non-invertible	TQFT.	A	new	
type	of	anomaly	inflow

4.	The	true	symmetry	of	this	theory	is	a	2-group	symmetry.	The	
0-form	symmetry								and	the	1-form	symmetry								are	not	
independent	of	each	other,	but	intrinsically	connected.

ZT
2 ZT

4

2.	View	it	as	a	spin	TQFT	with	T2 = (�1)NF

Can	show	explicitly	that										has	no	obstruction	ZT
4

MB,	M.	Cheng,	2017

ZT
2 A

Benini,	Cordova,	Hsin 2018
Tachikawa 2017



Pseudo-realization	and	“anomaly	inflow”

The	heart	of	the	problem	was	the	(non)-existence	of	a	doubled	
semion theory	with								symmetry	and		⌘rb = �1Zr

2

But	we	can	pseudo-realize it	at	the	surface	of	a	non-trivial	(3+1)D	system

r

Can	gap	out	all	edge	modes	such	that	reflection	eigenvalue	of	Wilson	string	
for	b	becomes	-1

MB,	M.	Cheng,	2017

e and	m	particles	on	mirror	plane	carry	half									chargeZr
2

b	x	e	is	condensed	at	the	junction,	so	b	can	leak	into	the	bulk	as	e

à pseudo-realization



Layer	construction	and	bulk	Z2 gauge	theory

Stack	layers	of	(2+1)D	Z2 gauge	theories	
Condense	pairs	of	e	particles	from	neighboring	planes	

à bulk	(3+1)D	Z2 gauge	theory
Condense	b	x	e	at	the	surface	

à b	can	leak	into	bulk	as	Z2 gauge	charge
à s	and	s’	become	bound	to	endpoints	of	magnetic	flux	lines



This	means	that	Sp(4)2 CS	theory	can	also	exist	with	a	global	
symmetry,	as	long	as	it	is	pseudo-realized at	the	surface	of	a	(3+1)D	
system	that	contains	a	dynamical	Z2 gauge	theory

Zr
2

Similar	phenomenon	found	in	a	discrete	gauge	theory	with	gauge	
group	D16 and	with	global	Z2 symmetry	(internal,	unitary)		by
Fidkowski and	Vishwanath (2015).	

There,	the	phenomenon	could	be	related	to	symmetry	
fractionalization	of	strings (flux	loops)	in	the	(3+1)D	bulk.	This	
interpretation	is	not	available	in	the	case	of	space-time	reflection	
symmetry.	



Infinite	sequence	of	theories	with	H3 obstructions

Any	theory	with	a																								obstruction	is	compatible	with		H3
⇢(ZT

2 ,A) ZT
4

symmetry.	Thus	we	can	again	gauge									while	adding	a	DW	term
for	the								gauge	field.	This	gives	a	new	theory	with
obstruction

T2

T2

This	process	can	be	repeated	indefinitely

H3
⇢(ZT

2 ,A)

SU(5)1 Sp(4)2 …..
Gauge	T2 Gauge	T2

…..SU(3)1 ⇥ SU(3)1 SO(4)4

U(1)⇥ U(1)
…..



Summary

• Symmetry	fractionalization	characterized	by												and	{⌘Ta } {⌘ra}

Required	to	determine	path	integral	on	non-orientable	spacetimes

• Explicit	formulae	for	‘t	Hooft anomalies	for	global								symmetries		ZT
2

• Simple	sufficient	conditions	for	diagnosing	existence	of	
symmetry	localization	obstruction	for	global	ZT

2

• General	method	to	produce	theories	with									H3 obstructions	ZT
2

• Various	resolutions	of	H3 obstructions.	
An	unusual	type	of	anomaly	inflow	where	bulk	is	a	dynamical
Z2 gauge	theory



(1+1)D time-reversal / reflection SPTs

Time-reversal, T, or reflection, r

Topological path integral



(1+1)D time-reversal / reflection SPTs

Time-reversal SPT:

Trivial

Non-Trivial

Local Kramers degeneracy at edge



(1+1)D time-reversal / reflection SPTs

Reflection SPT:

Reflection eigenvalue = topological invariant



Symmetry fractionalization in (2+1)D

If                   define 

If                   define = eigenvalue of reflection 

Determines whether 
carries local Kramers degeneracy


