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Outline

joint with R. Donagi and C. Simpson

HMS for the moduli of flat bundles on curves.

Non-abelian Hodge theory as a tool for constructing
objects in the Fukaya category (= quantum A-branes).

Examples: Automorphic sheaves on intersections of
quadrics.
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HMS for moduli spaces (i)

Main characters: The moduli of flat bundles and the moduli
of HIggs bundles on an algebraic curve.

Setup:
‚ C - a smooth compact curve of genus g ą 1;
‚ G , LG - a pair of affine semisimple algebraic group over C.
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HMS for moduli spaces (i)

Main characters: The moduli of flat bundles and the moduli
of HIggs bundles on an algebraic curve.

Setup:
‚ C - a smooth compact curve of genus g ą 1;
‚ G , LG - a pair of affine semisimple algebraic group over C.

To avoid special
considerations
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HMS for moduli spaces (i)

Main characters: The moduli of flat bundles and the moduli
of HIggs bundles on an algebraic curve.

Loc “ moduli space of flat algebraic G bundles on C

“ moduli of pairs V “ pV ,∇q, with V a principal G
bundle on C , ∇ an algebraic integrable connection on V .

Higgs “ moduli space of algebraic Higgs G bundles on C

“ moduli of pairs E “ pE , θq, with E a principal G
bundle on C , θ P H0pC , adpE q b Ω1

C q.
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HMS for moduli spaces (i)

Main characters: The moduli of flat bundles and the moduli
of HIggs bundles on an algebraic curve.

Loc “ moduli space of flat algebraic G bundles on C

“ moduli of pairs V “ pV ,∇q, with V a principal G
bundle on C , ∇ an algebraic integrable connection on V .

Higgs “ moduli space of algebraic Higgs G bundles on C

“ moduli of pairs E “ pE , θq, with E a principal G
bundle on C , θ P H0pC , adpE q b Ω1

C q.

LLoc, LHiggs - the analogous moduli for structure group LG .
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HMS for moduli spaces (ii)

LLoc and Higgs are mirror Calabi-Yau
(hyper-Kähler) spaces.

Explanation: SYZ Mirror Symmetry

LLoc and LHiggs belong to the same twistor family and
are related by a hyper-Kähler rotation .
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HMS for moduli spaces (ii)

LLoc and Higgs are mirror Calabi-Yau
(hyper-Kähler) spaces.

Explanation: SYZ Mirror Symmetry

LLoc and LHiggs belong to the same twistor family and
are related by a hyper-Kähler rotation .

`
sLags in LLoc

˘
ô

`
holoLags in LHiggs

˘
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HMS for moduli spaces (ii)

LLoc and Higgs are mirror Calabi-Yau
(hyper-Kähler) spaces.

Explanation: SYZ Mirror Symmetry

LLoc and LHiggs belong to the same twistor family and
are related by a hyper-Kähler rotation .
LHiggs and Higgs have Hitchin maps Lh : LHiggs Ñ LB

and h : Higgs Ñ B which are integrable systems .
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HMS for moduli spaces (ii)

LLoc and Higgs are mirror Calabi-Yau
(hyper-Kähler) spaces.

Explanation: SYZ Mirror Symmetry

LLoc and LHiggs belong to the same twistor family and
are related by a hyper-Kähler rotation .
LHiggs and Higgs have Hitchin maps Lh : LHiggs Ñ LB

and h : Higgs Ñ B which are integrable systems .

General fibers are holoLag
abelian varieties
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HMS for moduli spaces (ii)

LLoc and Higgs are mirror Calabi-Yau
(hyper-Kähler) spaces.

Explanation: SYZ Mirror Symmetry

LLoc and LHiggs belong to the same twistor family and
are related by a hyper-Kähler rotation .
LHiggs and Higgs have Hitchin maps Lh : LHiggs Ñ LB

and h : Higgs Ñ B which are integrable systems .

There is a natural identification B – LB under which
h : Higgs Ñ B and Lh : LHiggs Ñ LB become dual
families of abelian varieties (cf [Donagi-P]).
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HMS for moduli spaces (iii)
In particualr we get:

the complex
space LLoc

the symplectic
space pHiggs, ωq

mirror

Tony Pantev University of Pennsylvania

HMS and NAHT



Introduction HMS and GLC Two examples Odds and ends

HMS for moduli spaces (iii)
In particualr we get:

the complex
space LLoc

the symplectic
space pHiggs, ωq

mirror

T -duality

the real part of the holomorphic

symplectic form
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HMS for moduli spaces (iii)
In particualr we get:

the complex
space LLoc

the symplectic
space pHiggs, ωq

mirror

Homological Mirror Symmetry holds:
there is a mirror equivalence of categories

hms : DpLLoc,Oq
–
Ñ FukwrpHiggs, ωq .
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HMS for moduli spaces (iii)
In particualr we get:

the complex
space LLoc

the symplectic
space pHiggs, ωq

mirror

Homological Mirror Symmetry holds:
there is a mirror equivalence of categories

hms : DpLLoc,Oq
–
Ñ FukwrpHiggs, ωq .

Goal: Understand the equivalence hms in geometric terms.
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HMS for moduli spaces (iv)
Lucky break: The wrapped Fukaya category FukwrpHiggs, ωq
admits an equivalent description in terms of D-modules.
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HMS for moduli spaces (iv)
Lucky break: The wrapped Fukaya category FukwrpHiggs, ωq
admits an equivalent description in terms of D-modules.

Explanation:

Higgs – T_ Bun where Bun is the moduli of algebraic
G -bundles on C . In particular each cotangent fiber
T_

E Bun is an object in FukwrpHiggs, ωq
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HMS for moduli spaces (iv)
Lucky break: The wrapped Fukaya category FukwrpHiggs, ωq
admits an equivalent description in terms of D-modules.

Explanation:

Higgs – T_ Bun where Bun is the moduli of algebraic
G -bundles on C .

Floer theory (Abouzaid, Fukaya-Seidel-Smith) assigns
a D-module on Bun to any P P obFukwrpHiggs, ωq:

P induces a stratification on Bun

Sk “ tE P Bun | dimHF pP ,T_
E Bunq “ ku.

Family Floer theory endows the bundle of Floer

homologies on Sk with a flat connection.

Tony Pantev University of Pennsylvania

HMS and NAHT



Introduction HMS and GLC Two examples Odds and ends

HMS for moduli spaces (v)

Upshot: In this context HMS can be viewed as an equivalence

DpLLoc,Oq
–
Ñ DpBun,Dq.
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HMS for moduli spaces (v)

Upshot: In this context HMS can be viewed as an equivalence

DpLLoc,Oq
–
Ñ DpBun,Dq.

Derived category of coherent

D-modules on Bun
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HMS for moduli spaces (v)

Upshot: In this context HMS can be viewed as an equivalence

DpLLoc,Oq
–
Ñ DpBun,Dq.

Note: This is precisely the setting of the Geometric Langlands
correspondece (GLC) which predicts that there is a natural
equivalence of categories:

(GLC) c : DpLLoc,Oq
–

ÝÑ DpBun,Dq,

uniquely characterized by the property that c intertwines the
natural symmetries of the source (tensorization operators) and
the target (Hecke operators).
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HMS for moduli spaces (vi)

Recasting of the problem:

The cotangent bundle structure of Higgs and family
Floer theory convert hms into c.

The mirrors of the B-branes (coherent sheaves) on LLoc
are naturally D-modules on Bun.
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HMS for moduli spaces (vi)

Recasting of the problem:

The cotangent bundle structure of Higgs and family
Floer theory convert hms into c.

The mirrors of the B-branes (coherent sheaves) on LLoc
are naturally D-modules on Bun.

Consistent with the Gukov-Witten big

brane quantization procedure
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HMS for moduli spaces (vi)

Recasting of the problem:

The cotangent bundle structure of Higgs and family
Floer theory convert hms into c.

The mirrors of the B-branes (coherent sheaves) on LLoc
are naturally D-modules on Bun.

Note: The GLC map c is uniquely characterized by the
property that it sends the structure sheaves of points V in
LLoc to Hecke eigen D-modules cpOVq on Bun:

Hµ pcpOVqq “ cpOVq b ρµpVq.
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HMS for moduli spaces (vi)

Recasting of the problem:

The cotangent bundle structure of Higgs and family
Floer theory convert hms into c.

The mirrors of the B-branes (coherent sheaves) on LLoc
are naturally D-modules on Bun.

Note: The GLC map c is uniquely characterized by the
property that it sends the structure sheaves of points V in
LLoc to Hecke eigen D-modules cpOVq on Bun:

Hµ pcpOVqq “ cpOVq b ρµpVq.

Here µ is an appropriate character, and Hµ is the Hecke
correspondence on Bun bounded by µ.
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HMS for moduli spaces (vii)

Strategy:

Use non-abelian Hodge theory (NAHT) to rewrite the
D-module eigensheaf problem as an eigensheaf probem
for (parabolic) Higgs sheaves.

Use Fourier-Mukai duality (cf. Hausel-Thaddeus,
Donagi-P) for the Hitchin systems Higgs Ñ B and
LHiggs Ñ LB to construct a Higgs sheaf satisfying the
NAHT and Hecke eigensheaf conditions.
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HMS for moduli spaces (vii)

Strategy:

Use non-abelian Hodge theory (NAHT) to rewrite the
D-module eigensheaf problem as an eigensheaf probem
for (parabolic) Higgs sheaves.

Use Fourier-Mukai duality (cf. Hausel-Thaddeus,
Donagi-P) for the Hitchin systems Higgs Ñ B and
LHiggs Ñ LB to construct a Higgs sheaf satisfying the
NAHT and Hecke eigensheaf conditions.

Remark: For any point V P LLoc this gives: the
corresponding Hecke eigensheaf on Bun or equivalently the
object in the Fukaya category of Higgs which mirrors the
skyscraper sheaf OV.
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Intersections of quadrics

There are two examples in which the strategy can be followed
through completely. In both cases the moduli space Bun is
relatively small and is related to an intersection of quadrics in
a projective space:
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Intersections of quadrics

There are two examples in which the strategy can be followed
through completely. In both cases the moduli space Bun is
relatively small and is related to an intersection of quadrics in
a projective space:

G “ PSL2,
LG “ SL2 and C is a P

1 with five Z{2 orbifold
points, i.e. C has orbifold genus 5{4.

Tony Pantev University of Pennsylvania

HMS and NAHT



Introduction HMS and GLC Two examples Odds and ends

Intersections of quadrics

There are two examples in which the strategy can be followed
through completely. In both cases the moduli space Bun is
relatively small and is related to an intersection of quadrics in
a projective space:

G “ PSL2,
LG “ SL2 and C is a P

1 with five Z{2 orbifold
points, i.e. C has orbifold genus 5{4.

G “ PSL2,
LG “ SL2 and C is a smooth curve of genus 2.
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Intersections of quadrics

There are two examples in which the strategy can be followed
through completely. In both cases the moduli space Bun is
relatively small and is related to an intersection of quadrics in
a projective space:

G “ PSL2,
LG “ SL2 and C is a P

1 with five Z{2 orbifold
points, i.e. C has orbifold genus 5{4.

G “ PSL2,
LG “ SL2 and C is a smooth curve of genus 2.

In the first case the connected components of Bun are related
to the intersection of two quadrics in P4 while in the second
case they are related to the intersection of two quadrics in P5.
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Genus 5{4

Eigensheaves on del Pezzo surfaces (i)

Dictionary: Suppose Σ - an orbifold curve which is
generically a variety with underlying curve C and divisor of
orbifold points D Ă C . Then

ˆ
holomorphic
Higgs bundles Σ

˙
ÐÑ

¨
˝

tamely ramified strongly
parabolic Higgs bundles
on pC ,Dq

˛
‚.
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Genus 5{4

Eigensheaves on del Pezzo surfaces (i)

Dictionary: Suppose Σ - an orbifold curve which is
generically a variety with underlying curve C and divisor of
orbifold points D Ă C . Then

ˆ
holomorphic
Higgs bundles Σ

˙
ÐÑ

¨
˝

tamely ramified strongly
parabolic Higgs bundles
on pC ,Dq

˛
‚.

In particular: Can use parabolic language on pC ,Dq to pose
ans solve the Hecke eigensheaf problem on Σ.
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Genus 5{4

Eigensheaves on del Pezzo surfaces (ii)

Fix C “ P
1, and let ParC “ p1 ` p2 ` p3 ` p4 ` p5.
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Genus 5{4

Eigensheaves on del Pezzo surfaces (ii)

Fix C “ P
1, and let ParC “ p1 ` p2 ` p3 ` p4 ` p5.

Note:
‚ The moduli space of rank two parabolic bundles on
pC ,ParC q depends on a set of numerical invariants - the
degree of the level zero bundle in the parabolic family and the
set of parabolic weights.

‚ The collection of weights has a chamber structure and the
moduli space depends only on the chamber and not on the
particular collection of weights in that chamber.
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Genus 5{4

Eigensheaves on del Pezzo surfaces (ii)

Fix C “ P
1, and let ParC “ p1 ` p2 ` p3 ` p4 ` p5.

Theorem: [Donagi-P] There is a maximal chamber of
parabolic weights such that:

every semistable parabolic bundle is stable;

the connected components of the moduli space
corresponding to different degrees are canonically
isomorphic to the dP5 del Pezzo surface

X “ BlParC pS2C q.

Here C Ă S2C diagonally, i.e. X is obtained by blowing up the
5 points tpiu

5
i“1 on the conic C Ă S2C – P

2.
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Genus 5{4

Eigensheaves on del Pezzo surfaces (iii)

Equivalently:

X can be described in its anticanonical model as the
intersection of two quadrics in P

4.

The parameter space of the pencil of quadrics vanishing
on X is naturally identified with C and the divisor ParC
corresponds to the locus of singular quadrics in the pencil.
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Genus 5{4

Eigensheaves on del Pezzo surfaces (iii)

Equivalently:

X can be described in its anticanonical model as the
intersection of two quadrics in P

4.

The parameter space of the pencil of quadrics vanishing
on X is naturally identified with C and the divisor ParC
corresponds to the locus of singular quadrics in the pencil.

Theorem: [Donagi-P] The wobbly locus in X is the union of
the 16 lines LI Ă X .

Note: The 16 lines in X Ă P4 are naturally labeled by the
subsets I Ă t1, 2, 3, 4, 5u of odd cardinality.
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Genus 5{4

Eigensheaves on del Pezzo surfaces (iv)
From the point of view of the anti-canonicla model the basic
Hecke correspondence parametrizing the modifications of
bundles at a single point can be compactified and resolved to
the correspondence

H
p

zz✉✉
✉✉
✉✉

q

''◆
◆◆

◆◆
◆◆

X X ˆ C
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Genus 5{4

Eigensheaves on del Pezzo surfaces (iv)

H
p

zz✉✉
✉✉
✉✉

q

''◆
◆◆

◆◆
◆◆

X X ˆ C

Here:

H “ Blš
I
{LI ˆLI

Bl∆pX ˆ X q;

the two maps H Ñ X correspond to the blow down map
H Ñ X ˆ X followed by the first or second projection;

the map H Ñ C is the resolution of the rational map
X ˆ X 99K C which sends px , y q P X ˆ X to the unique
λ P C such that Qλ Ă P4 contains the line through the
two points x , y P P4.
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Genus 5{4

Eigensheaves on del Pezzo surfaces (v)

Note:
By construction H is smooth. The general fibers of q are
smooth rational curves (Hecke lines) and the general
fibers of p are smooth dP6 del Pezzo surfaces.
All spaces in the Hecke diagram are naturally equipped
with (normal crossings!) parabolic divisors:
ParC “

ř5

i“1 pi , ParX “
ř

I LI
ParXˆC “ ParX ˆ C ` X ˆ ParC ,
ParH “ p˚ParX ` q˚ParXˆC .
This geometry provides the setup needed to formulate the
parabolic version of the Hecke eigensheaf problem.
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Genus 5{4

Eigensheaves on del Pezzo surfaces (v)

Theorem: [Donagi-P] Fix generic parabolic weights on ParC .
Then

Hecke kernel: there exists a natural parabolic line bundle I‚

on pH,ParHq with parch1pI‚q “ 0.

Hecke eigensheaf: for any pE‚, θq there exists a unique pF‚, ϕq

stable strongly parabolic rank two

Higgs bundle on C with parch1 “ 0

stable strongly parabolic rank

four Higgs bundle on X with

parch1, parch2 “ 0
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Genus 5{4

Eigensheaves on del Pezzo surfaces (v)

Theorem: [Donagi-P] Fix generic parabolic weights on ParC .
Then

Hecke kernel: there exists a natural parabolic line bundle I‚

on pH,ParHq with parch1pI‚q “ 0.

Hecke eigensheaf: for any pE‚, θq there exists a unique pF‚, ϕq
so that

q˚pp˚pF‚, ϕq b pI‚, 0qq “ p˚
X pF‚, φq b p˚

C pE‚, θq
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Genus 5{4

Eigensheaves on del Pezzo surfaces (vi)

Note:

The theorem contains implicitly a theory of
Grothendieck’s six functors for parabolic Higgs bundles.

Together with Donagi and Simpson we developed such a
theory to ensure that NAHT converts the parabolic Hecke
property in the theorem into the D-module Hecke
property of the GLC.
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Genus 5{4

Eigensheaves on del Pezzo surfaces (vi)

In particular we proved the following

Theorem: [Donagi-P-Simpson]

There are explicit algebraic formulas for pushforward,
pullback, and tensor product of semistable tame
parabolic Higgs bundles with vanishing Chern classes.

Under the NAH correspondence the constructions are
compatible with the standard pushforwards, pullbacks,
and tensor products of D-modules, and with L2

pushforwards, pullbacks, and tensor products of harmonic
bundles.
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Genus 5{4

Eigensheaves on del Pezzo surfaces (vi)

In particular we proved the following

Theorem: [Donagi-P-Simpson]

There are explicit algebraic formulas for pushforward,
pullback, and tensor product of semistable tame
parabolic Higgs bundles with vanishing Chern classes.

Under the NAH correspondence the constructions are
compatible with the standard pushforwards, pullbacks,
and tensor products of D-modules, and with L2

pushforwards, pullbacks, and tensor products of harmonic
bundles.

Note: These algebraic formulas are crucial for the
construction and the proof of the properties of pF‚, ϕq.
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Genus 5{4

Eigensheaves on del Pezzo surfaces (vii)

Strategy of proof: Construct pF‚, ϕq and check the
Mochizuki and Hecke conditions by abelianization and higher
dimensional versions of the spectral cover construction.
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Genus 5{4

Eigensheaves on del Pezzo surfaces (vii)

Starting point: Understand the spectral data for pE‚, θq.

pE‚, θq is given by spectral data: a parabolic line bundle

on the spectral cover rC of C corresponding to θ.

Genericity of pE‚, θqq ensures that rC is a smooth courve
of genus two.

Strong parabolicity implies that rC Ñ C is branched at all
five points of the parabolic divisor ParC Ă C so
specifying rC is equivalent to specifying the sixth branch
point p6 P C .

The moduli space LHiggs of strongly parabolic Higgs
bundles on C is a 4-dimensional integrable system with
Hitchin base B “ H0pC ,Op1qq.
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Genus 5{4

Eigensheaves on del Pezzo surfaces (viii)

Step one: Understand the spectral cover for pF‚, ϕq.

The Hitchin fiber through pE‚, θq can be identified with

the Jacobian J of rC .
The natural rational map LHiggs 99K X restricts to a
rational map J 99K X which is quasi finite of degree 4
and fails to be proper over the wobbly locus ParX Ă X .

The map J 99K X is not defined at the 16 points of order
two in J . Blowing these points up resolves the map to a
4 : 1 finite cover f : Y Ñ X -the modular spectral cover
corresponding to rC .

The map f : Y Ñ X decomposes into two double covers:
Y Ñ Y and Y Ñ X where Y is the Kummer K3 for the
ableian surface J .

Tony Pantev University of Pennsylvania
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Genus 5{4

Eigensheaves on del Pezzo surfaces (ix)

Step two: Understand the spectral line bundle for pF‚, ϕq.

The Fourier-Mukai transform of the skyscraper sheaf of
pE‚, θq P J is a degree zero line bundle on J which pulls
back to a line bundle LpE‚,θq on Y .

Choose undeterminate parabolic weights e along
ParY “ f ˚ParX and define F‚ to be the f -pushforward of
the resulting parabolic line bundle:

F‚ “ LpE‚,θq pe ¨ ParY q‚ .

The rational map J 99K T_X resolves to a section
α P H0pY , f ˚Ω1

X plogParX qq and we define
ϕ “ f˚pα b ´q.

Tony Pantev University of Pennsylvania
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Genus 5{4

Eigensheaves on del Pezzo surfaces (x)

Use the fact that LpE‚,θq is an eigensheaf for the
abelianized Hecke correspondece to rewrite the Mochizuki
and Hecke conditions on pF‚, ϕq as equations on the
parabolic weights of pF‚, ϕq.

Show that the numerical equations have a unique solution
in terms of the parabolic weights for pE‚, θq - a higher
dimensional version of the Aomoto map.
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Genus 5{4

Eigensheaves on del Pezzo surfaces (x)

Use the fact that LpE‚,θq is an eigensheaf for the
abelianized Hecke correspondece to rewrite the Mochizuki
and Hecke conditions on pF‚, ϕq as equations on the
parabolic weights of pF‚, ϕq.

Show that the numerical equations have a unique solution
in terms of the parabolic weights for pE‚, θq - a higher
dimensional version of the Aomoto map.

Note: Carrying this out requires the algebraic formalism for
computing pushforwards of Higgs bundles and computations
with spectral covers of the abelianized Hecke correspondence.
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Genus 2

Eigensheaves on quadric line complexes (i)

Fix C - a smooth curve of genus 2.

The moduli space of rank two bundles of fixed determinant on
C has two interesting components:

X0 – P
3

X1 – a quadric line complex of P3

“ intersection of two quadrics in P
5
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Genus 2

Eigensheaves on quadric line complexes (i)

Fix C - a smooth curve of genus 2.

The moduli space of rank two bundles of fixed determinant on
C has two interesting components:

X0 – P
3

X1 – a quadric line complex of P3

“ intersection of two quadrics in P
5

moduli of bundles with

trivial determinant

moduli of bundles with

determinant OC ppq
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Genus 2

Eigensheaves on quadric line complexes (ii)

Theorem: [Pal-Pauly]

The wobbly divisor in X0 has 17 components. It consists
of the quartic Kummer surface for the Jacobian of C and
the 16 trope planes - the planes in P3 that are tangent to
the Kummer surface along a conic.

The wobbly divisor in X1 is an irreducible surface.
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Genus 2

Eigensheaves on quadric line complexes (ii)

Theorem: [Pal-Pauly]

The wobbly divisor in X0 has 17 components. It consists
of the quartic Kummer surface for the Jacobian of C and
the 16 trope planes - the planes in P3 that are tangent to
the Kummer surface along a conic.

The wobbly divisor in X1 is an irreducible surface.

Note: There is a new feature in this case: the wobbly divisor
in X0 is not normal crossings in codimension two.
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Genus 2

Eigensheaves on quadric line complexes (ii)

Theorem: [Pal-Pauly]

The wobbly divisor in X0 has 17 components. It consists
of the quartic Kummer surface for the Jacobian of C and
the 16 trope planes - the planes in P3 that are tangent to
the Kummer surface along a conic.

The wobbly divisor in X1 is an irreducible surface.

Note: There is a new feature in this case: the wobbly divisor
in X0 is not normal crossings in codimension two. In fact the
same holds for X1.
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Genus 2

Eigensheaves on quadric line complexes (ii)

Theorem: [Donagi-P-Simpson] Fix a Weierstrass point p of
C and identify X1 with the moduli of stable rank two bundles
on C of determinant OC ppq. Let C be the 16-sheeted etale
cover of C parametrizing degree zero line bundles L on C such
that Lb2ppq is effective.

There is a natural embedding of the curve C in the
quadric line complex X1 and the wobbly divisor in X1 is
the union of all lines tangent to C .

The wobbly divisor in X1 has a curve of cusps isomorphic
to C and a curve of nodes isomorphic to the quotient of
C by the lift of the hyperelliptic involution of C .
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Genus 2

Eigensheaves on quadric line complexes (iii)

Again the basic Hecke correspondence can be compactifiied
and resolved to a correspondence:

H
p

zztt
tt
tt

q

''◆
◆◆

◆◆
◆◆

X1 X0 ˆ C

which is an incidence correspondence between points and
planes in P

5.
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Genus 2

Eigensheaves on quadric line complexes (iv)
Explanation:

Viewing X1 as the base locus of a pencil of quadrics in P5

we can identify C with the moduli of rulings by planes P2

of the quadrics in the pencil.

Thus a point q P C determines a quadric Q in the pencil
and a ruling R of Q.

Viewing X1 as a quadric line complex of X0 identifies X0

with a ruling of Q: a point x P X0 gives a plane in Q, i.e.
the plane Ax Ă Q Ă P5 parametrizing all lines in X0

passing through x .

H consists of all triples pℓ, x , qq P X1 ˆ X0 ˆ C such that
ℓ P Ax .
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Genus 2

Eigensheaves on quadric line complexes (v)

Theorem: [Donagi-P-Simpson] Let pE , θq be a stable rank
two Higgs bundle on C with trivial determinant and a smooth
spectral cover. Then there exist a unique rank 8 tame strongly
parabolic Higgs bundle pF‚, ϕq on X “ X0

š
X1 so that

The parabolic structure of F‚ is along the wobbly divisor
in X .

F‚ satisfies Mochizuki’s conditions: it is stable and with
vanishing parabolic Chern classes.

(in progress) There exists a natural parabolic line bundle
I‚ on H so that pF‚, ϕq is a Hecke eigensheaf of
eigenvalue pE , θq for the Hecke kernel pI‚, 0q.

Tony Pantev University of Pennsylvania

HMS and NAHT



Introduction HMS and GLC Two examples Odds and ends

Genus 2

Eigensheaves on quadric line complexes (v)

Remark: The proof of this result requires tackling of several
general difficulties that are not present in the del Pezzo case:

One needs to resolve the wobbly divisors to be normal
crossings in codimension two before Mochizuki’s
conditions can even be formulated. We handle this issue
by going to a branched cover of the moduli space.

In the construction of the Hecke eigensheaf one has to
work with Prym varieties rather than Jacobians.

One needs a conceptual way of resolving the
indeterminacies of the rational maps from these Prym
varieties to X . We give such a procedure based on
successive blow ups in attracting sets for the Cˆ-action
on Higgs.
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NAHT and GLC

NAHT (i)

Non Abelian Hodge theory (NAHT) [ Hitchin, Donaldson,
Corlette, Simpson, Saito, Sabbah, Mochizuki, . . . ]: in a
nutshell gives an equivalence

pflat bundlesq Ø pHiggs bundlesq

The equivalence is mediated by a richer object: harmonic
bundle or twistor D-module which specializes to both flat
bundles and Higgs bundles.
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NAHT and GLC

NAHT (i)

Non Abelian Hodge theory (NAHT) [ Hitchin, Donaldson,
Corlette, Simpson, Saito, Sabbah, Mochizuki, . . . ]: in a
nutshell gives an equivalence

pflat bundlesq Ø pHiggs bundlesq

The equivalence is mediated by a richer object: harmonic
bundle or twistor D-module which specializes to both flat
bundles and Higgs bundles.

A variant of Deligne’s notion of a λ-

connection: at λ “ 1 we have a flat

connection, while at λ “ 0 we have a

Higgs bundle.
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NAHT and GLC

NAHT (ii)
Note: For the application to GLC we need a ramified higher
dimensional version of NAHT developed in a sequence of deep
works by Biquard, Jost-Yang-Zuo, Sabbah, Saito, Mochizuki,
and Simpson.
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NAHT and GLC

NAHT (ii)
Note: For the application to GLC we need a ramified higher
dimensional version of NAHT. This theory has several special
features:

It deals with ramified objects - parabolic local systems
and parabolic Higgs bundles.
The objects involved must satisfy new subtler stability
conditions discovered by Mochizuki.
Application to GLC hinge on verification of Mochizuki’s
conditions. This requires a detailed analysis of instability
loci in moduli spaces.
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NAHT and GLC

NAHT (ii)
Note: For the application to GLC we need a ramified higher
dimensional version of NAHT. This theory has several special
features:

It deals with ramified objects - parabolic local systems
and parabolic Higgs bundles.
The objects involved must satisfy new subtler stability
conditions discovered by Mochizuki.
Application to GLC hinge on verification of Mochizuki’s
conditions. This requires a detailed analysis of instability
loci in moduli spaces.

In NAHT we have to work with the moduli spaces,

rather than the stacks. So stability is important.
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NAHT and GLC

Special loci

Important loci:

Unstable locus The locus in Higgs consisting of semistable
Higgs bundles whose uderlying bundle is unstable.

Wobbly locus The locus in Bun consisting of non-very-stable
bundles.
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NAHT and GLC

Special loci

Important loci:

Unstable locus The locus in Higgs consisting of semistable
Higgs bundles whose uderlying bundle is unstable.

Wobbly locus The locus in Bun consisting of non-very-stable
bundles.

A bundle E is very stable if the only nilpotent Higgs field θ

on E is θ “ 0. (ô the cotangent fiber T_
tEuBun meets the

Hitchin fiber over 0 only at the point θ “ 0.)

Tony Pantev University of Pennsylvania

HMS and NAHT



Introduction HMS and GLC Two examples Odds and ends

NAHT and GLC

Special loci

Important loci:

Unstable locus The locus in Higgs consisting of semistable
Higgs bundles whose uderlying bundle is unstable.

Wobbly locus The locus in Bun consisting of non-very-stable
bundles.

A bundle E is very stable if the only nilpotent Higgs field θ

on E is θ “ 0. (ô the cotangent fiber T_
tEuBun meets the

Hitchin fiber over 0 only at the point θ “ 0.) Laumon: very
stable implies stable.
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NAHT and GLC

Special loci

Important loci:

Unstable locus The locus in Higgs consisting of semistable
Higgs bundles whose uderlying bundle is unstable.

Wobbly locus The locus in Bun consisting of non-very-stable
bundles.

A bundle E is very stable if the only nilpotent Higgs field θ

on E is θ “ 0. (ô the cotangent fiber T_
tEuBun meets the

Hitchin fiber over 0 only at the point θ “ 0.) Laumon: very
stable implies stable.

A bundle E is wobbly if it is stable but not very stable.
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NAHT and GLC

Special loci

Important loci:

Unstable locus The locus in Higgs consisting of semistable
Higgs bundles whose uderlying bundle is unstable.

Wobbly locus The locus in Bun consisting of non-very-stable
bundles.

A bundle E is very stable if the only nilpotent Higgs field θ

on E is θ “ 0. (ô the cotangent fiber T_
tEuBun meets the

Hitchin fiber over 0 only at the point θ “ 0.) Laumon: very
stable implies stable.

A bundle E is wobbly if it is stable but not very stable.
Peon-Nieto-Pauly: The wobbly locus is the ’image’ of the
unstable locus.
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NAHT and GLC

NAHT: the theorems (i)

Theorem: [Corlette-Simpson] Let pX ,OX p1qq be a smooth
complex projective variety. Then there is a natural equivalence
of dg b-categories:

nahX :

˜
finite rank
flat bundles
on X

¸
ÝÑ

¨
˚̋

finite rank OX p1q-
semistable Higgs
bundles on X with
ch1 “ 0 and ch2 “ 0

˛
‹‚
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NAHT and GLC

NAHT: the theorems (ii)

Mochizuki proved a version of the NAH correspondence which
allows for singularities of the objects involved.
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NAHT and GLC

NAHT: the theorems (ii)

Theorem: [Mochizuki] Let pX ,OX p1qq be a polarized projec-

tive variety and let D Ă X be an effective divisor. Suppose that

we have a closed subvariety Z Ă X of codimension ě 3, such that

X ´ Z is smooth and D ´ Z is a normal crossing divisor.

Then there is a canonical equivalence of dg b-categories:

¨
˚̊
˝

finite rank tame

parabolic flat

bundles on

pX ,Dq

˛
‹‹‚

nahX ,D
ÝÑ

¨
˚̊
˚̊
˚̊
˝

finite rank locally abelian

tame parabolic Higgs

bundles on pX ,Dq
which are OX p1q-
semistable and satisfy

parch1 “ 0 and parch2 “ 0

˛
‹‹‹‹‹‹‚
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NAHT and GLC

NAHT: the theorems (iii)

Mochizuki requires three basic ingredients for this theorem:

(1) a good compactification, which is smooth and where the
boundary is a divisor with normal crossings away from
codimension 3;

(2) a local condition: tameness (the Higgs field is allowed to
have at most logarithmic poles along D), and
compatibility of filtrations (the parabolic structure is
locally isomorphic to a direct sum of rank one objects);

(3) a global condition: vanishing of parabolic Chern classes.
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NAHT and GLC

NAHT: the theorems (iv)
Another important ingredient is Mochizuki’s extension theorem

Theorem: [Mochizuki] Let U be a quasi-projective variety with

two compactifications φ : U Ñ X , and ψ : U Ñ Y where:

‚ X , Y are projective and irreducible;

‚ X is smooth and X ´ U is a normal crossing divisor away from

codimension 3;

Then the restriction from X to U followed by the middle perversity

extension from U to Y gives an equivalence of categories:

φ˚!˝ψ
˚ :

¨
˝

irreducible tame

parabolic flat

bundles on pX ,Dq

˛
‚ÝÑ

´
simple D-modules on Y

which are smooth on U

¯
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The plan

Tony Pantev University of Pennsylvania

HMS and NAHT



Introduction HMS and GLC Two examples Odds and ends

The plan

LG -flat bundle pV ,∇q on C
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The plan

LG -flat bundle pV ,∇q on C

p1q
��

LG -Higgs bundle pE , θq on C
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The plan

LG -flat bundle pV ,∇q on C

p1q
��

LG -Higgs bundle pE , θq on C

This is the Corlette-Simpson non-abelian Hodge
correspondence pE , θq “ nahC pV ,∇q on the smooth compact
curve C .
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The plan

LG -flat bunle pV ,∇q on C

p1q
��

LG -Higgs bundle pE , θq on C
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The plan

LG -flat bundle pV ,∇q on C

p1q
��

LG -Higgs bundle pE , θq on C

p2q
��

abHecke-eigensheaf on Higgs
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The plan

LG -flat bundle pV ,∇q on C

p1q
��

LG -Higgs bundle pE , θq on C

p2q
��

abHecke-eigensheaf on Higgs

The functor p2q sends pE , θq P LHiggs to FMpOpE ,θqq.

Tony Pantev University of Pennsylvania

HMS and NAHT



Introduction HMS and GLC Two examples Odds and ends

The plan

LG -flat bundle pV ,∇q on C

p1q
��

LG -Higgs bundle pE , θq on C

p2q
��

abHecke-eigensheaf on Higgs
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The plan

LG -flat bundle pV ,∇q on C

p1q
��

LG -Higgs bundle pE , θq on C

p2q
��

abHecke-eigensheaf on Higgs
p3q

��

parabolic Higgs sheaf on Bun satisfying MC (1)-(3)
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The plan

LG -flat bundle pV ,∇q on C

p1q
��

LG -Higgs bundle pE , θq on C

p2q
��

abHecke-eigensheaf on Higgs
p3q

��

parabolic Higgs sheaf on Bun satisfying MC (1)-(3)
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The plan

LG -flat bundle pV ,∇q on C

p1q
��

LG -Higgs bundle pE , θq on C

p2q
��

abHecke-eigensheaf on Higgs
p3q

��

parabolic Higgs sheaf on Bun satisfying MC (1)-(3)
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The plan

LG -flat bundle pV ,∇q on C

p1q
��

LG -Higgs bundle pE , θq on C

p2q
��

abHecke-eigensheaf on Higgs
p3q

��

parabolic Higgs sheaf on Bun satisfying MC (1)-(3)
p4q

��

parabolic flat bundle on Bun satisfying MC (1)-(3)
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The plan

LG -flat bundle pV ,∇q on C

p1q
��

LG -Higgs bundle pE , θq on C

p2q
��

abHecke-eigensheaf on Higgs
p3q

��

parabolic Higgs sheaf on Bun satisfying MC (1)-(3)
p4q

��

parabolic flat bundle on Bun satisfying MC (1)-(3)

The functor p4q is the parabolic non-abelian Hodge
correspondence of Mochizuki.
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The plan

LG -flat bundle pV ,∇q on C

p1q
��

LG -Higgs bundle pE , θq on C

p2q
��

abHecke-eigensheaf on Higgs
p3q

��

parabolic Higgs sheaf on Bun satisfying MC (1)-(3)
p4q

��

parabolic flat bundle on Bun satisfying MC (1)-(3)
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The plan

LG -flat bundle pV ,∇q on C

p1q
��

LG -Higgs bundle pE , θq on C

p2q
��

abHecke-eigensheaf on Higgs
p3q

��

parabolic Higgs sheaf on Bun satisfying MC (1)-(3)
p4q

��

parabolic flat bundle on Bun satisfying MC (1)-(3)
p5q

��

ordinary flat bundle on Zariski open in Bun
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The plan

LG -flat bundle pV ,∇q on C

p1q
��

LG -Higgs bundle pE , θq on C

p2q
��

abHecke-eigensheaf on Higgs
p3q

��

parabolic Higgs sheaf on Bun satisfying MC (1)-(3)
p4q

��

parabolic flat bundle on Bun satisfying MC (1)-(3)
p5q

��

ordinary flat bundle on Zariski open in Bun

Step 5 is just restriction.
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The plan

LG -flat bundle pV ,∇q on C

p1q
��

LG -Higgs bundle pE , θq on C

p2q
��

abHecke-eigensheaf on Higgs
p3q

��

parabolic Higgs sheaf on Bun satisfying MC (1)-(3)
p4q

��

parabolic flat bundle on Bun satisfying MC (1)-(3)
p5q

��

ordinary flat bundle on Zariski open in Bun
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Parabolic objects

LG -flat bundle pV ,∇q on C

p1q
��

LG -Higgs bundle pE , θq on C

p2q
��

abHecke-eigensheaf on Higgs
p3q

��

parabolic Higgs sheaf on Bun satisfying MC (1)-(3)
p4q

��

parabolic flat bundle on Bun satisfying MC (1)-(3)

p5q
��

ordinary flat bundle on Zariski open in Bun
p6q

��

D-module on Bun

Back
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Parabolic objects

Parabolic sheaves

Fix a pair pX ,Dq, where

X - a compact complex manifold;

D Ă X - a divisor with simple normal crossings;

D “ YiPSDi - the irreducible decomposition of D.
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Parabolic objects

Parabolic sheaves

Definition: A torsion free parabolic sheaf on pX ,Dq is a
collection of torsion free coherent sheaves tEαuαPRS together
with inclusions Eα Ă Eβ of sheaves of OX -modules, specified
for all α ď β, satisfying the conditions:

[semicontinuity] for every α P R
S , there exists a real

number c ą 0 so that Eα`ε “ Eα for all
functions ε : S Ñ r0, cs.

[support] if δi : S Ñ R is the characteristic function of i ,
then for all α P RS we have Eα`δi “ EαpDiq
(compatibly with the inclusion).
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Parabolic objects

Flags and weights

Fix a parabolic torsion free sheaf E‚ on pX ,Dq and c P R
S .
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Parabolic objects

Flags and weights

Fix a parabolic torsion free sheaf E‚ on pX ,Dq and c P R
S .

For every i P S we get an induced filtration tiFauci ´1ăaďci of
the restricted sheaf Ec|Di

.
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Parabolic objects

Flags and weights

Fix a parabolic torsion free sheaf E‚ on pX ,Dq and c P R
S .

For every i P S we get an induced filtration tiFauci ´1ăaďci of
the restricted sheaf Ec|Di

.

iFa “
ď

αďc
αiďa

Eα
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Parabolic objects

Flags and weights

Fix a parabolic torsion free sheaf E‚ on pX ,Dq and c P R
S .

For every i P S we get an induced filtration tiFauci ´1ăaďci of
the restricted sheaf Ec|Di

.
Define igra Ec :“

iFa{
iFiFăa

.
[semicontinuity] ñ the set of parabolic weights

weightspEc, iq “
 
a P pci ´ 1, ci s

ˇ̌
igra ‰ 0

(

is finite
Note: The sheaf Ec together with the flags
tiFa| i P S , a P weightspEc, iqu reconstruct the parabolic sheaf
E‚.
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Parabolic objects

Locally abelian parabolic bundles (i)

Example: A parabolic line bundle is a parabolic sheaf F‚

for which all sheaves Fα are invertible. If a P R
S , then define

a parabolic line bundle OX p
ř

iPS aiDiq‚ by setting

˜
OX

˜ÿ

iPS

aiDi

¸¸

α

:“ OX

˜ÿ

iPS

tai ` αi uDi

¸

Claim: Every parabolic line bundle F‚ is isomorphic to
L b OX p

ř
iPS aiDiq‚ for some L P PicpX q, and some a P RS .
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Parabolic objects

Locally abelian parabolic bundles (ii)

Definition: A parabolic sheaf F‚ is a locally abelian bundle,
if in a Zariski neighborhood of any point x P X there is an
isomorphism between F‚ and a direct sum of parabolic line
bundles.

Note: A parabolic bundle
`
Ec, tiF‚uiPS

˘
is locally abelian iff

on every intersection Di1 X ¨ ¨ ¨ X Dik the iterated graded
i1gra1 ¨ ¨ ¨ ikgrak Ec does not depend on the order of the
components.
Variant: We can define similarly locally abelian parabolic local
systems, Higgs bundles, or more generally locally abelian
parabolic λ-connections.
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Parabolic objects

Locally abelian parabolic λ-connections (i)
Let λ P C. A λ-connection with tame ramification along D, is
a pair pE ,Dλq, where:

E is a holomorphic vector bundle on X ;

D
λ : E Ñ E b Ω1

X plogDq, is a C-linear map satisfying the
λ-twisted Leibnitz rule

D
λpf ¨ sq “ fDλs ` λs b df .

We say that Dλ is flat if Dλ ˝ Dλ “ 0.
Note:

pflat 1-connectionq “ pflat connection with regular singularitiesq

pflat 0-connectionq “ pHiggs bundle with logarithmic polesq
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Parabolic objects

Locally abelian parabolic λ-connections (ii)
Definition: A tame parabolic λ-connection is a pair
pE‚,D

λq, where

E‚ is a prabolic bundle on pX ,Dq;

Dλ : Eα Ñ Eα b Ω1
X plogDq is a tame flat λ-connection

specified for all α P RS (compatibly with the inclusions).

A tame parabolic λ-connection pE‚,D
λq is locally abelian if

the underlying bundle E‚ is locally abelian. It is strongly
parabolic if the action of the residue of Dλ on the associated
graded for the parabolic filtration is zero.

Back
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Parabolic objects

Parabolic Chern classes (i)

Let E‚ be a parabolic torsion free sheaf on pX ,Dq, then the
parabolic Chern character of E‚ is given by the Iyer-Simpson
formula:
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Parabolic objects

Parabolic Chern classes (i)

Let E‚ be a parabolic torsion free sheaf on pX ,Dq, then the
parabolic Chern character of E‚ is given by the Iyer-Simpson
formula:

parchpE‚q “ parchpcE q “

ś
iPS

şci`1

ci
dαi

“
ch pEαi

q e´
ř

iPS αiDi
‰

ś
iPS

ş1
0
dαie

´
ř

iPS αiDi

.
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Parabolic objects

Parabolic Chern classes (i)

Let E‚ be a parabolic torsion free sheaf on pX ,Dq, then the
parabolic Chern character of E‚ is given by the Iyer-Simpson
formula:

parchpE‚q “ parchpcE q “

ś
iPS

şci`1

ci
dαi

“
ch pEαi

q e´
ř

iPS αiDi
‰

ś
iPS

ş1
0
dαie

´
ř

iPS αiDi

.

c P RS is any base point
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Parabolic objects

Parabolic Chern classes (i)

Let E‚ be a parabolic torsion free sheaf on pX ,Dq, then the
parabolic Chern character of E‚ is given by the Iyer-Simpson
formula:

parchpE‚q “ parchpcE q “

ś
iPS

şci`1

ci
dαi

“
ch pEαi

q e´
ř

iPS αiDi
‰

ś
iPS

ş1
0
dαie

´
ř

iPS αiDi

.

Note: Given c P RS define the c-truncation cE of E‚ “ the
collection tEαucăαďc`δ, with δ “

ř
iPS δi .
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parabolic Chern character of E‚ is given by the Iyer-Simpson
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Note: Given c P RS define the c-truncation cE of E‚ “ the
collection tEαucăαďc`δ, with δ “

ř
iPS δi .

[support] ñ E‚ is effectively reconstructed by any truncation

cE . In fact: the numerator of the Iyer-Simpson formula is
independent of the choice of truncation.
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Parabolic objects

Parabolic Chern classes (ii)

Example: The first parabolic Chern class of E‚ is given by:
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Parabolic objects

Parabolic Chern classes (ii)

Example: The first parabolic Chern class of E‚ is given by:

parc1 “ c1pEcq ´
ÿ

iPS

¨
˝ ÿ

aPweightspEc,iq

a rank igra Ec

˛
‚¨ Di
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