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The partition function of the topological string is of interest both for physics

(effective Sugra actions, Nekrasov partition functions,...)

and mathematics

(enumerative invariants: Gromov-Witten, Donaldson-Thomas,

Gopakumar-Vafa,...)

There are various approaches to its computation

(Topological recursion, holomorphic anomaly, topological vertex,...)

Most of them are perturbative in one way or another, with some exceptions

(matrix model; cf. in particular Marino et. al.)
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The problem

Let us consider CY of “class Σ”, local CY of the form

xy − P (u, v) = 0, with P (u, v) = v2 −Q0(u),

where Q0 is a quadratic differential on a Riemann surface C = Cg,n, for g = 0:

Q0 =

n∑
r=1

(
δr

(u− zr)2
+

Er
u− zr

)
.

CY of class Σ relevant for geometric engineering of

d = 4, N = 2 SUSY gauge theories of class S,

Seiberg-Witten curve: Σ = {(u, v);P (u, v) = 0} ⊂ T ∗C.

Problem: Define and compute topological string partition function Ztop for class Σ
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Local mirror symmetry

A-model on X,

Kähler moduli t = t(m),
↔

B-model on local CY Y ,

cplx. structure moduli m

where complex structure moduli of Y : m = (E,d, z),

E = (E1, E2, . . . ), d = (δ1, δ2, . . . ), z = (z1, z2, . . . ),

and Kähler moduli t: Periods of canonical one form vdu on Σ.

Regard Ztop as function Ztop(t;λ).
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Predictions from string dualities

A chain of dualities was discussed by Dijkgraaf-Hollands-Sulkowski-Vafa relating:

i) Geometric (GW) – Type IIB string theory on TN × Y , where and TN is the

Taub-NUT space and Y is the non-compact Calabi-Yau manifold xy−P (u, v) = 0.

ii) D-branes (DT) – Type IIA string theory on R3×S1×X, where X is the mirror

of the Calabi-Yau Y manifold in i) with a D6-brane wrapping S1 ×X.

iii) I-brane: Type IIA string background with a D4 and a D6 intersecting along Σ.

It was argued that generating functions of BPS-states are related

ZGW ∼ ZDT ∼ ZI, where ZI = Zff,

Zff: partition function of free fermions on Σ (massless open strings between D4, D6)

Topological string coupling λ ∼ B-field along D6  

 non-commutative deformation of Σ, the “quantum curve”
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Extracting the answer from free fermions?

More precisely, the prediction of Dijgraaf et. al. can be formulated as

Zff(ξ, t;λ) =
∑

p∈H2(X,Z)

ep·ξZtop(t + λp, λ).

This could give us an elegant non-perturbative definition of Ztop(t, λ) if we knew

a) exactly how to turn the curve Σ into a “quantum curve”,

b) how to associate a free fermion partition function to a “quantum curve”,

c) the relation between the variables (ξ, t) and parameters of “quantum curve”.

This has been illustrated by some examples in the work of Dijkgraaf et. al..
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Outline of the solution

Our goal: Turn this into a general and non-perturbative mathematical definition

of the topological string partition functions for class Σ.

To explain the answer we need to address to following questions:

A) How to quantize Σ and turn it into a free fermion partition function?

– use meromorphic opers and theory of infinite Grassmannians / free fermions

B) How to parameterise quantum curves in terms of (ξ, t)?

– use Riemann-Hilbert correspondence and Abelianisation

C) Why is Abelianisation the right thing to use?

– exact WKB gives a canonical way to “quantize” the leading order result
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A) From quantum curve to free fermion partition functions I

Quantum curve ∼ Differential equation quantising the equation for Σ:

v2 −Q0(u) = 0  (λ2∂2
u +Q(u))χ(u) = 0, Q(u) = Q0(u) +O(λ).

Corresponding D-module ∼ flat connection having horizontal sections Ψ,

∇ΣΨ(u) ≡
[
λ∂u +

(
0 Q

1 0

)]
Ψ(u) = 0.

Fermionic state fΨ(Q) defined as

fΨ(Q) = exp

(
−
∑
k>0

∑
l≥0

ψ−k ·Akl · ψ̄−l
)
f0

{ψs,n, ψ̄t,m} = δs,tδn,−m

{ψs,n, ψt,m} = 0 = {ψ̄s,n, ψ̄t,m}

(Ψ(x))−1Ψ(y)

x− y
=
∑
l≥0

y−l−1wl(x), wl(x) = −xl +
∑
k>0

x−kAkl

Note that {wl(x), l = 0, 1, . . . } is a basis for the subspace WΨ in the Sato-Segal-Wilson

Grassmannian associated to Ψ.
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A) From quantum curve to free fermion partition functions II

Proposal: Free fermion partition function = tau-function (Sato-Jimbo-Miwa-Segal-Wilson)

Zff(ξ, t;λ) =
〈
f0 , e

H(τ)fΨ(Q)
〉
.

where H(τ) =
∑
iHiτi, Hi: generators of an abelian sub-algebra A of W1+∞,

W1+∞: Lie algebra generated by fermion bilinears.

Nice,

(+) relation to integrable hierarchies

but so far pretty useless, in general∗)

(–) don’t know which sub-algebra A is “suitable” for our problem

(–) don’t know relation between (ξ, t) and (τ,Q)

∗) Exceptions: Examples investigated by Dijkgraaf et. al.
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A) How to quantize the spectral curve I

Quantum curve receives quantum corrections:

Q0(u)→ Q(u) = Q0(u) + λ

d∑
k=1

v

y − uk
− λ2

d∑
k=1

3

4(y − uk)2
.

λ2v2
k +Qk = 0, Qk = lim

u→uk

(
Q(u)− λ v

u− uk
+ λ2 3

4(ul − uk)2

)
Why?

• Only now we have enough parameters in quantum curve (m,u,v),

u = (u1, . . . , un−3), v = (v1, . . . , vn−3), to account for both ξ and t.

• The extra singularities are more apparent than real, the D-module associated to

the quantum curve is non-singular at u = uk,

λ∂u +

(
0 Q

1 0

)
gauge equivalent to λ∂u +

(
A11 A12

A21 A22

)
,

with Aij = Aij(u) non-singular at u = uk.
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B) How to parameterise quantum curves in terms of (ξ, t)?

Main problem: Relation between (ξ, t) and parameters of quantum curve.

Our proposal:

(ξ, t) ∼ very special coordinates for monodromy data

made precise through

• Riemann-Hilbert correspondence – correspondence between monodromies

(holonomies of flat connection) and D-modules (quantum curves),

and

• Abelianisation: Curve Σ 7→ very special coordinates for monodromy data.
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B) Abelianisation (Hollands-Neitzke)

Fenchel-Nielsen (FN) network (black) decomposes surface C into annular regions Ai.

D1 ' D2 '

D2 ' 'D1 ' '

D1 D2
J1

J 2
J12

D3 ' D4 '

D4 ' 'D3 ' '

D3 D4
J 3

J 4
J 34

T
1 2 3 4

• Connection can be diagonalised on each annular region Ai. Parallel transport  
collection of diagonal matrices Di, D

′
i, D

′′
i , eigenvalues: simple functions of eiθr,

r = 1, 2, 3, 4, eiσ, and diagonal matrix T , eigenvalue eiτ .

• Jump matrices Ji, Jij (non-diagonal!) representing non-abelian parallel transport

across walls of FN network uniquely determined in terms of matrices Di, D
′
i, D

′′
i

by consistency conditions.

Any closed path γ on C can be decomposed into segments contained in Ai (blue),

segments crossing walls (green), and a path traversing annulus between the two pairs

of pants (grey)  holonomies parameterised in terms of σ, τ , θr, r = 1, 2, 3, 4.
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B) Our proposal, finally

To given t ∈ R3g−3+n (Kähler parameters), ξ (twist parameters)

• find mirror curve Σ, v2 = Q0(u) and canonical basis for H1(Σ,Z) such that

parameters t are the a-cycle periods of Σ

• find Fenchel-Nielsen network defined by Q0(u) for real t

• construct quantum curve ∇Σ associated to (ξ, t) by Riemann-Hilbert, assuming

Dictionary: σr = tr/λ, iτr = ξr, θ2
r = δk/λ

2.

• construct Zff(ξ, t;λ) as SJMSW tau-function associated to ∇Σ

• expand in eξ·p, extract Ztop using

Zff(ξ, t;λ) =
∑

p∈H2(X,Z)

ep·ξZtop(t + λp, λ)

• Analytically continue in t

– Typeset by FoilTEX – 12



The proof for C = C0,4:

Calculation of both sides, comparison

Calculation of tau-functions: Can be done using either

• Tau-functions are generalised conformal blocks of free fermion VOA

(Moore; Palmer; J.T. ’17)

•  can be factorised by gluing construction (Iorgov-Lisovyy-JT)

or, even better

• Factorisation of Riemann-Hilbert problems

•  factorisation of tau-functions (Gavrylenko-Lisovyy, Cafasso-Gavrylenko-Lisovyy)

Either way  explicit formulae (first conjectured by Gamayun-Iorgov-Lisovyy)

T
(
σ, τ ; θ ; z

)
=
∑
n∈Z

∑
ξ,ζ∈Y

Z(n)
ξ,ζ,+Z

(n)
ξ,ζ,− =

∑
n∈Z

einτ G(σ + n , θ ; z ),

where:
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where G(σ , θ ; z ) can be factorised as

G(σ , θ ; z ) = M(σ, θ4, θ3)M(σ, θ2, θ1)F(σ , θ ; z ),

using the following notations:

• The functions N(θ3, θ2, θ1) are defined as

M(θ3, θ2, θ1) =

∏
ε=±G(1 + θ3 + ε(θ2 + θ1))G(1 + θ3 + ε(θ2 − θ1))

G(1 + 2θ3)G(1− 2θ2)G(1− 2θ1)
,

where G(p) is the Barnes G-function that satisfies G(p+ 1) = Γ(p)G(p).

• F(σ , θ ; z ) can be represented by the following power series

F(σ , θ ; z ) = z
σ2−θ21−θ

2
2(1− z)2θ2θ3

∑
ξ,ζ∈Y

z
|ξ|+|ζ|Fξ,ζ(σ, θ),

with Y set of partitions, coefficients Fξ,ζ(σ, θ) explicitly given in

Fξ,ζ(σ, θ) =
∏

(i,j)∈ξ

((θ2 + σ + i− j)2 − θ2
1)((θ3 + σ + i− j)2 − θ2

4)

(ξ′j − i+ ξi − j + 1)2(ξ′j − i+ ζi − j + 1 + 2σ)2

∏
(i,j)∈ζ

((θ2 − σ + i− j)2 − θ2
1)((θ3 − σ + i− j)2 − θ2

4)

(ζ′j − i+ ζi − j + 1)2(ζ′j − i+ ξi − j + 1− 2σ)2
.

ζi / ζ′i arm / leg length of (i, j) ∈ Y.
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The proof for C = C0,4, II

Topological string partition function: Can be calculated using top. vertex

Careful 4d limit  match!

Crucial is the precise formula for M(θ3, θ2, θ1):

• Only for very special choices of M(θ3, θ2, θ1) one gets Fourier-series of the form

T
(
σ, τ ; θ ; z

)
:=
∑
n∈Z

einτ G(σ + n , θ ; z ),

Corollary: Quantitative check of string dualities!

• Only for very particular coordinate τ one gets right formula for M(θ3, θ2, θ1).
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C) Why abelianisation is the right thing to use

Key-word: Exact WKB:

• Foliations defined by Q0 for real periods t decompose C into annular regions.

• In each annular region there exist unique solutions of quantum curve equation

with diagonal monodromy and leading asymptotics

χ(u, λ) =

√
λ

(Q0(u))
1
4

exp

(
±
∫ u

du

(
1

λ

√
Q0(u) +

Q1(u)

2
√
Q0(u)

))
(1 +O(λ)),

defined through Borel-summation of λ-expansion.

• Analytic continuation across walls represented by jump matrices used in

Abelianisation

•  monodromy of Borel sums naturally parameterised by σ, τ .
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Summary

We have presented a proposal for a non-perturbative∗) and computable definition

of the topological string partition functions for class Σ.

∗) manifest in representation as a Fredholm determinant (Cafasso-Gavrylenko-Lisovyy)

Key elements of the proposal

A) How to quantize Σ and turn it into a free fermion partition function?

– use meromorphic opers and theory of inf. Grassmannians / free fermions

B) How to parameterise quantum curves in terms of (ξ, t)?

– use Riemann-Hilbert correspondence and Abelianisation

C) Why is Abelianisation the right thing to do?

– exact WKB gives a canonical way to “quantise” the leading order result
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Relation to other approaches

This problem has previously been approached (in simple cases) by other methods

• Integrable structures: (Aganagic-Dijkgraaf-Klemm-Marino-Vafa,. . . ,Okounkov)

Our work makes integrability effective in complicated cases.

• Topological recursion: So far unclear which exact initial conditions to put. Can

now be extracted from exact result (R. Belliard, J.T., in progress)

• Quantisation of H3(Y,R), holomorphic anomaly. The expansion

Zff(ξ, t;λ) =
∑

p∈H2(X,Z)

ep·ξZtop(t + λp, λ)

has an interpretation as a Fourier-transformation relating natural representations

for quantisation of H3(Y,R) (Iorgov-lisovyy-J.T., and work in progress)

• Relation to Hitchin systems: (cf. Diaconescu, Dijkgraaf, Donagi, Hofman, Pantev)

• Matrix models: Relation between contours and choices of coordinates (σ, τ)
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Outlook

• Toric CY: (Cf. Marino; Jimbo-Nagoya-Sakai)

• Higher genus, irregular singularities

• Higher rank (cf. Coman-Pomoni-J.T.’17, and Hollands-Neizke (to appear))

Crucial is the interplay between two integrable structures in this context:

• Integrable flows on moduli spaces –

(integrable hierarches, Hitchin systems, isomonodromic deformations,....)

• Integrable structures on character varieties –

best expressed in terms of coordinates of Fenchel-Nielsen type.
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