Frobenius manifolds and quantum groups

Xiaomeng Xu MIT

String-Math 2018 Tohoku University, Sendai, Japan

Xiaomeng Xu MIT Frobenius manifolds and quantum groups

The Dubrovin systems (or Frobenius manifolds) give a geometric formulation of Witten-Dijkgraaf-Verlinde-Verlinde equations governing deformations of 2D topological field theories.

The Dubrovin systems (or Frobenius manifolds) give a geometric formulation of Witten-Dijkgraaf-Verlinde-Verlinde equations governing deformations of 2D topological field theories.

In the poster, we propose a quantization of the Dubrovin systems, and then explore its relation with quantum groups and Gromov-Witten type theory.

A linear system for a matrix valued function $F(z, u^1, ..., u^n)$

$$\frac{\partial F}{\partial z} = \left(\frac{u}{z^2} + \frac{V(u)}{z}\right) F,$$
$$\frac{\partial F}{\partial u^i} = V_i(z, u) \cdot F.$$

Here $u = \text{diag}(u^1, ..., u^n)$, V(u) satisfies the Jimbo-Miwa-Ueno PDEs (compatibility of the system).

A linear system for a matrix valued function $F(z, u^1, ..., u^n)$

$$\frac{\partial F}{\partial z} = \left(\frac{u}{z^2} + \frac{V(u)}{z}\right) F,$$
$$\frac{\partial F}{\partial u^i} = V_i(z, u) \cdot F.$$

Here $u = \text{diag}(u^1, ..., u^n)$, V(u) satisfies the Jimbo-Miwa-Ueno PDEs (compatibility of the system).

Stokes matrix: For any fixed u, the first equation has different canonical fundamental solutions in different sectors on z-plane. The Stokes matrix S(u) measures the jump phenomenon of solutions.

A linear system for a matrix valued function $F(z, u^1, ..., u^n)$

$$\frac{\partial F}{\partial z} = \left(\frac{u}{z^2} + \frac{V(u)}{z}\right) F,$$
$$\frac{\partial F}{\partial u^i} = V_i(z, u) \cdot F.$$

Here $u = \text{diag}(u^1, ..., u^n)$, V(u) satisfies the Jimbo-Miwa-Ueno PDEs (compatibility of the system).

Stokes matrix: For any fixed u, the first equation has different canonical fundamental solutions in different sectors on z-plane. The Stokes matrix S(u) measures the jump phenomenon of solutions.

Isomonodromicity: S(u) don't depend on u.

We introduce a system of equations for a $U\mathfrak{g}^{\otimes 2}[[\hbar]]$ -valued function $F(z, u^1, ..., u^n)$:

$$rac{\partial F}{\partial z} = \left(rac{u\otimes 1}{z^2} + \hbar rac{\Omega(u)}{z}
ight) F,$$

 $rac{\partial F}{\partial u^i} = \Omega_i(z, u) \cdot F.$

Here $\Omega(u)$ satisfies a set of PDEs (compatibility of the system).

We introduce a system of equations for a $U\mathfrak{g}^{\otimes 2}[[\hbar]]$ -valued function $F(z, u^1, ..., u^n)$:

$$\frac{\partial F}{\partial z} = \left(\frac{u \otimes 1}{z^2} + \hbar \frac{\Omega(u)}{z}\right) F,$$
$$\frac{\partial F}{\partial u^i} = \Omega_i(z, u) \cdot F.$$

Here $\Omega(u)$ satisfies a set of PDEs (compatibility of the system).

Quantum Stokes matrix: for any u, the element $S_{\hbar}(u) \in U\mathfrak{g}^{\otimes 2}[[\hbar]]$ measuring the jump phenomenon of solutions.

We introduce a system of equations for a $U\mathfrak{g}^{\otimes 2}[[\hbar]]$ -valued function $F(z, u^1, ..., u^n)$:

$$\frac{\partial F}{\partial z} = \left(\frac{u \otimes 1}{z^2} + \hbar \frac{\Omega(u)}{z}\right) F,$$
$$\frac{\partial F}{\partial u^i} = \Omega_i(z, u) \cdot F.$$

Here $\Omega(u)$ satisfies a set of PDEs (compatibility of the system).

Quantum Stokes matrix: for any u, the element $S_{\hbar}(u) \in U\mathfrak{g}^{\otimes 2}[[\hbar]]$ measuring the jump phenomenon of solutions.

Theorem (Isomonodromicity) $S_{\hbar}(u)$ don't depend on u.

Semiclassical limit (a way of letting \hbar equal 0)

Semiclassical limit (a way of letting \hbar equal 0)

Theorem

The semiclassical limit of the IKZ system gives rise to Dubrovin systems, i.e.,

In particular, any solution F of the Dubrovin system has a natural \hbar -deformation $F_{\hbar} = F + F_1 \hbar + F_2 \hbar^2 + \cdots$.

Theorem

The q-Stokes matrices of IKZ systems satisfy Yang-Baxter equation.

Theorem

The q-Stokes matrices of IKZ systems satisfy Yang-Baxter equation.

Theorem

The q-Stokes matrices of IKZ systems satisfy Yang-Baxter equation.

Corollary (Boalch)

The space of Stokes matrices of Dubrovin systems is identified with a Poisson Lie group.

Theorem

The q-Stokes matrices of IKZ systems satisfy Yang-Baxter equation.

Corollary (Boalch)

The space of Stokes matrices of Dubrovin systems is identified with a Poisson Lie group.

Question: find a field theorietic interpretation.

• Following Givental, the solution *F* of a Dubrovin system is viewed as a symplectic transformation on certain loop space *H*.

• Following Givental, the solution *F* of a Dubrovin system is viewed as a symplectic transformation on certain loop space *H*.

• We expect that the deformation $F_{\hbar} = F + F_1 \hbar + O(\hbar^2)$ via IKZ system is a symplectic deformation of the transformation F on H.

Refinement of Gromov-Witten type theory.

Solutions of Dubrovin systems have two deformation/quantization:

Solutions of Dubrovin systems have two deformation/quantization:

• \hbar -deformation via the IKZ system;

Solutions of Dubrovin systems have two deformation/quantization:

- \hbar -deformation via the IKZ system;
- $\bullet \ \varepsilon\text{-deformation}$ via Givental's quantization.

Solutions of Dubrovin systems have two deformation/quantization:

- \hbar -deformation via the IKZ system;
- ε -deformation via Givental's quantization.

The conjecture can combine these two into a quantization with two parameters. In terms of integrable hierarchies, the two parameters ε and \hbar may correspond respectively to the dispersion and quantization parameters. It may be related to the prediction of Li from the topological string theory.

Thank you very much!