Modular Solutions to Minimal 6d SCFTs

and how to blow them up

Jie Gu

Ecole normale supérieure, UPMC, CNRS, Paris

String-Math 2018

Based on: arXiv:1701.00764: M-x Huang, JG, A-K Kashani-Poor, A. Klemm arXiv:1712.07017: M-x Huang, JG, A-K Kashani-Poor, A. Klemm, G. Lockhart, M. Del Zotto

Minimal 6d (0,1) SCFTs

• F-theory compactified on CY3 X: elliptic fibration over $O(-n) o \mathbb{P}^1$

n	1	2	3	4	5	6	7	8	12
G _{min}	_	_	<i>SU</i> (3)	<i>SO</i> (8)	F ₄	E ₆	$E_7^{\frac{1}{2}56}$	E7	E ₈

- Partition function $Z_{\text{SCFT}}(t_b, \tau, \mathbf{m}, \epsilon_{\pm})$ of a minimal model on $(\mathbb{R}^4 \times T^2)_{\epsilon_{\pm}}$ t_b : tensor modulus, τ : cxpl str. of T^2 , **m**: gauge/flavor fugacity
 - It has instanton contributions from elliptic genera of non-critical strings

$$Z_{\mathsf{SCFT}}(t_b,\tau,\mathbf{m},\epsilon_{\pm}) = Z_0(\tau,\mathbf{m},\epsilon_{\pm}) \cdot \left(1 + \sum_{k=1}^{\infty} e^{k \cdot 2\pi i t_b} \cdot \mathbb{E}_k(\tau,\mathbf{m},\epsilon_{\pm})\right)$$
(1)

• It is the same as refined topological string amplitude $Z_{top}(X)$ as a result of F-/M-theory duality.

Computation of elliptic genera

$$\mathbb{E}_{k}(-\frac{1}{\tau},\frac{\mathbf{z}}{\tau}) = e^{2\pi i f_{k}(\mathbf{z})/\tau} \mathbb{E}_{k}(\tau,\mathbf{z})$$
(2)

- Ansatz: \mathbb{E}_k is a ratio of weak Jacobi forms
 - ► denominator fixed from known pole structure. GV formula of $F_{top}(X)$, Z_{SCFT} reduced to Nekrasov partition function of 5d SYM when $\tau \to i\infty$.
 - numerator has finite terms, and is fixed by Castelnuovo bounds.
- Results: n = 1, 2 completely solved; n = 3, 4 for low numbers of strings.
- Blow them up:
 - Göttsche-Nakajima-Yoshioka blowup equations: recursion formulas for Nekrasov partition functions of 5d SYM.
 - Geometric formulation of GNY blowup equations.
 - Partially valid for E-string (n = 1).

Computation of elliptic genera

$$\mathbb{E}_{k}(-\frac{1}{\tau},\frac{\mathbf{z}}{\tau}) = e^{2\pi i f_{k}(\mathbf{z})/\tau} \mathbb{E}_{k}(\tau,\mathbf{z})$$
(2)

- Ansatz: \mathbb{E}_k is a ratio of weak Jacobi forms
 - ► denominator fixed from known pole structure. GV formula of $F_{top}(X)$, Z_{SCFT} reduced to Nekrasov partition function of 5d SYM when $\tau \to i\infty$.
 - numerator has finite terms, and is fixed by Castelnuovo bounds.
- Results: n = 1, 2 completely solved; n = 3, 4 for low numbers of strings.
- Blow them up:
 - Göttsche-Nakajima-Yoshioka blowup equations: recursion formulas for Nekrasov partition functions of 5d SYM.
 - Geometric formulation of GNY blowup equations.
 - Partially valid for E-string (n = 1).