Geometric Classification of 5d $\mathcal{N}=1~\text{SCFTs}$

Patrick Jefferson (Harvard University)

Introduction

The subject of this talk is the classification of 5d ${\cal N}=1$ SCFTs on the Coulomb branch using CY 3-folds

Based on 1801.04036 (PJ, Sheldon Katz, Hee-Cheol Kim, Cumrun Vafa)

Classification of 5d $\mathcal{N} = 1$ SCFTs is an open problem:

- Gauge theory classification in terms of (g, R, k) misses some theories predicted by string theory
- Geometric classification previously only done for rank one theories, which correspond to shrinking del Pezzo surfaces dP_{n<8}

New catalog of candidate gauge theories proposed in 1705.05836 captures all field theories previously missed; however, field theory methods cannot detect non-perturbative physics due to BPS instantons

Stringy/geometric constructions needed to verify existence of UV fixed points, along with non-Lagrangian theories (e.g. rank one dP_0)

M-theory compactifications on local CY 3-fold

It is possible to "construct" 5d ${\cal N}=1$ field theories by compactifying M-theory on a local CY 3-fold Y

Mn branes wrapping complex p-cycles C_p correspond to BPS particles/monopole strings whose mass/tension is controlled by the volume vol $(C_p) = \int_{C_p} J^p$ in the 3-fold Y (J is a Kähler class)

The extended Kähler cone, the closure of the set $\{\phi\}$ of all Kähler classes $J = \phi^i[C_{2,i}]$ such that $\int_{C_p} J^p > 0$, is identified with the Coulomb branch of the 5d theory

CFT fixed point $\phi = 0$ where all BPS states become massless/tensionless is thus a singularity $Y \rightarrow X$ where all cycles collapse to zero volume

Hence the existence of a 5d fixed point with Coulomb branch deformations implies the existence of a 3-fold Y with positive Kähler class J and a singular limit $Y \rightarrow X$

M-theory compactifications on local CY 3-fold

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Classification program

We assume all 3-folds engineering 5d fixed points can be realized as a neighborhood of a Kähler surface $C_2 = \bigcup_{i=1}^{\text{rank}} C_{2,i}$ with $C_{2,i}$ intersecting transversely in a curve, which maps to a canonical singularity

Problem reduces to classification of all graphs corresponding to 5d theories:

Classification results!

Interesting conclusions and future prospects

Geometric classification confirms almost all rank two gauge theories predicted by field theory analysis, with two exceptions:

- 1. $\mathfrak{su}(3)_{k=\pm 8}$, excluded
- 2. $\mathfrak{su}(3)_{k=\frac{1}{2}} + 1$ Sym, related to O7⁺/frozen singularity

All 5d SCFTs up to rank two descend from 6d (1,0) SCFTs compactified on \mathcal{S}^1

- Rank one has one parent, dP9
- Rank two has five "parents":
 - $1. \ \mathsf{BI}_5\mathbb{F}_1\cup \mathsf{dP}_6$
 - 2. $BI_9\mathbb{F}_4\cup\mathbb{F}_0$
 - $\textbf{3.} \ \mathbb{F}_2 \cup d\mathsf{P}_7$
 - 4. $\mathbb{F}_6 \cup dP_4$
 - 5. $\mathbb{F}_{10} \cup \mathbb{F}_0$

Can we classify higher rank theories?

Flavor symmetry enhancements for rank two and higher?

Thank you!