Deep Learning and AdS/CFT Sotaro Sugishita (Osaka U. → U. of Kentucky)

with Koji Hashimoto (Osaka U.), Akinori Tanaka (RIKEN), Akio Tomiya (CCNU→RIKEN)

Based on arXiv:1802.08313 (PRD 98, 046019) & 1809.????

Discrete Approaches to the Dynamics of Fields and Space-Time 2018 Tohoku univ., Sep. 10, 2018 Title was changed by PRD.

Deep Learning and AdS/CFT the correspondence

Outline

- Introduction
- Deep learning
- AdS/CFT
- Deep learning and AdS/CFT
- Summary

What is deep learning?

Deep learning is part of machine learning.

What is deep learning?

Deep learning is part of machine learning.

In the machine, $y = f_N \circ f_{N-1} \cdots \circ f_1(x)$ $x \in \mathcal{D}^{\text{input}}$

 f_i : non-linear transformation w/ tunable parameters

- "Learning" is tuning of the parameters.
- "Deep" means large N.

Related to coarse-graining?

Output captures some essential characteristics of input.

Related to RG?

It reminds us of the renormalizaton group.

Related to RG?

It reminds us of the renormalizaton group.

Or theoretical physicists are tuned so.

Related to RG?

It reminds us of the renormalizaton group.

Or theoretical physicists are tuned so.

There are papers discussing the relation between machine learning and RG.

[Beny (2013), Mehta & Schwab (2014), Koch-Janusz & Ringel (2017), Iso, Shiba & Yokoo (2018), ...]

- > Osaka CTSR RIKEN iTHES/iTHEMS Kavli IPMU
- > Joint symposium

Deep learning and physics

- > Venue: Nambu hall, Osaka university
- > Date: June 5 (Mon), 2017, 13:00-18:00
- > Invited speakers :
- > S. Amari (RIKEN)
- > S. Ikeda (ISM / Kavli IPMU)
- > Y. Kawahara (Osaka U. / RIKEN)
- > M. Taki (RIKEN)
- > A. Tanaka (RIKEN)
- > T. Ohtsuki (Sophia U.)
- > N. Suzuki (Kavli IPMU)

- > Osaka CTSR RIKEN iTHES/iTHEMS Kavli IPMU
- > Joint symposium

Deep learning and physics

- > Venue: Nambu hall, Osaka university
- > Date: June 5 (Mon), 2017, 13:00-18:00
- > Invited speakers :
- > S. Amari (RIKEN)
- > S. Ikeda (ISM / Kavli IPMU)
- > Y. Kawahara (Osaka U. / RIKEN)
- > M. Taki (RIKEN)
- > A. Tanaka (RIKEN)
- > T. Ohtsuki (Sophia U.)
- > N. Suzuki (Kavli IPMU)

Inspired by Dr. Amari's talk

AdS/CFT and RG

scale transformation = η -translation

$$x^{\mu} \to e^{\lambda} x^{\mu}$$

AdS/CFT and RG

scale transformation = η -translation

$$x^{\mu} \to e^{\lambda} x^{\mu}$$

holographic RG

AdS space as neural network

Can we regard the evolution in the bulk direction as the propagation in a deep neural network?

Outline

- ✓ Introduction
- Deep learning
- AdS/CFT
- Deep learning and AdS/CFT
- Summary

Machine Learning

classification

Hey, is this a bear?

• regression data $\{(x^{(i)}, y^{(i)})\}$ \longrightarrow y = f(x) f(x) = ax + bLearn (a, b). • y = f(x)• y =

Neural network

Neural network

$$\vec{x} = \vec{x}^{(0)} \longrightarrow \vec{x}^{(1)} \longrightarrow \vec{x}^{(2)} \longrightarrow \vec{x}^{(3)} = \vec{y}$$

Neural network

$$\vec{x} = \vec{x}^{(0)} \longrightarrow \vec{x}^{(1)} \longrightarrow \vec{x}^{(2)} \longrightarrow \vec{x}^{(3)} = \vec{y}$$

#(Layers) is large Deep Learning

Neural network $\vec{x} = \vec{x}^{(0)} \longrightarrow \vec{x}^{(1)} \longrightarrow \vec{x}^{(2)} \longrightarrow \vec{x}^{(3)} = \vec{y}$

Proceed to next layer by <u>linear trsf</u> and <u>non-linear trsf</u>.

$$\vec{x}^{(a)} \longrightarrow \vec{x}^{(a+1)} = \varphi^{(a)} (W^{(a)} \vec{x}^{(a)} + \vec{b}^{(a)})$$

Neural network $\vec{x} = \vec{x}^{(0)} \longrightarrow \vec{x}^{(1)} \longrightarrow \vec{x}^{(2)} \longrightarrow \vec{x}^{(3)} = \vec{y}$

Proceed to next layer by <u>linear trsf</u> and <u>non-linear trsf</u>.

$$\vec{x}^{(a)} \longrightarrow \vec{x}^{(a+1)} = \varphi^{(a)} (W^{(a)} \vec{x}^{(a)} + \vec{b}^{(a)})$$

• parameters of linear transformation is tunable. $W^{(a)}$: weight, $\vec{b}^{(a)}$: bias updated in the learning process

Neural network $\vec{x} = \vec{x}^{(0)} \longrightarrow \vec{x}^{(1)} \longrightarrow \vec{x}^{(2)} \longrightarrow \vec{x}^{(3)} = \vec{y}$

Proceed to next layer by <u>linear trsf</u> and <u>non-linear trsf</u>.

$$\vec{x}^{(a)} \longrightarrow \vec{x}^{(a+1)} = \varphi^{(a)} (W^{(a)} \vec{x}^{(a)} + \vec{b}^{(a)})$$

- parameters of linear transformation is tunable. $W^{(a)}$: weight, $\vec{b}^{(a)}$: bias updated in the learning process
- non-linear transformation $\varphi^{(a)}(\vec{x})$ is not changed. activation function

e.g., sigmoid function $\sigma_c(x) = \frac{1}{1 + e^{-cx}}$

Teach answers to the machine.

• Feed input data $\vec{x}^{(i)}$ to the machine.

• Feed input data $\vec{x}^{(i)}$ to the machine.

 Adjust parameters discretion so that a loss function (error function, cost function) decreases.

- mean squared error
- L1 norm
- cross entropy
- •
- gradient descent

$$\omega \to \omega - \epsilon \partial_{\omega} E(\omega)$$

Regularization

 $E(\omega) \to E(\omega) + E_{\rm reg}$

e.g.

- to avoid the overfitting
- to get the expected properties

Unsupervised learning

For example, [Google Brain (2012)]

10 million images

The concept of cats

The concept of faces

Machine learning for physics

- Quantum many body system
 [Carleo & Troyer (2016), Fujita, Nakagawa, Sugiura & Oshikawa (2017),...]
- Detection of phase transition in statistical systems
 [Wang (2016), Tanaka & Tomiya (2016), Ohtsuki^2 (2016),...]
- String landscape

[He (2017), Ruehle (2017), Carifio, Halverson, Krioukov & Nelson (2017),...]

 LHC, Monte Calro, cosmology, neutron star, ..., AdS/CFT

Outline

- ✓ Introduction
- ✓ Deep learning
- AdS/CFT
- Deep learning and AdS/CFT
- Summary

AdS/CFT correspondence

[Maldacena (1997)]

Many works about this conjecture.

Emergence of geometry

 AdS/CFT states that the bulk direction emerges from the dynamics of boundary QFT.

Holography

Gravity can be defined in terms of low-dimension theories.

A definition of quantum gravity

Holographic approach

In some parameter regions, a QFT can be described by a classical Einstein gravity with matter fields.

We can analyze the QFT with strong couplings by using classical gravity. hard easy

• holographic QCD,...

Note

• CFTs which have gravity dual descriptions are very specific.

e.g. 4d $\mathcal{N} = 4$ SYM \longleftrightarrow string theory on AdS₅×S⁵

In order to have a "good gravity description", CFT should satisfy some criteria: [Heemskerk, Penedones, Polchinski, Sully (2009), e.g. El-Showk & Papadodimas (2011)]

- large DOF (large *N*, large *c*,...)
- gapped spectrum (strong coupling)

We assume QFTS we will consider have semiclassical gravity descriptions.

GKP-Witten

[Gubser, Klebanov, Polyakov (1998), Witten (1998)]

$$\langle e^{\int d^d x J(x) \mathcal{O}(x)} \rangle_{\text{CFT}} \simeq e^{-S_{cl}^{grav}[J(x)]}$$

 Correlation functions in CFT can be computed from the classical solution of the dual field in gravitational theory.

boundary condition is fixed by J(x)

Dictionary in AdS/CFT

scalar operator \mathcal{O} in CFT_d with dim Δ

(2-pt function in the g.s. $\langle {\cal O}(x) {\cal O}(0)
angle \propto |x|^{-2\Delta}$)

scalar field $\phi(x)$ with mass $m \quad \left[m^2 = \Delta(\Delta - d)\right]$ on (d + 1)-AdS

Free scalar on AdS

$$S = \int d^{d+1}x \sqrt{-g} \frac{1}{2} \left(-g^{MN} \partial_M \phi \partial_N \phi - m^2 \phi^2 \right)$$

$$ds^2 = d\eta^2 + e^{2\eta} (dx_\mu dx^\mu) \qquad \begin{bmatrix} m^2 = \Delta(\Delta - d) \end{bmatrix}$$

AdS boundary $\eta\sim\infty$

- Asymptotic behavior of the classical solution near $\,\eta\sim\infty$

$$\phi_{\rm cl}(\eta, x) \sim e^{-(d-\Delta)\eta} (J(x) + \cdots) + e^{-\Delta\eta} (B(x) + \cdots)$$

$$B(x) = \frac{\langle \mathcal{O}(x) \rangle_J}{2\Delta - d} \qquad \text{1-pt func w/} \\ \text{source in CFT}$$

[Klebanov & Witten (1999)]

Asymptotically AdS

• Background does not need to be the exact AdS space. $ds^2 = d\eta^2 + e^{2\eta} (dx_\mu dx^\mu)$

Asympto AdS is OK. $g_{MN} \sim g_{MN}^{AdS}$ around $\eta \sim \infty$ It corresponds to an excited state in CFT.

 AdS Schwarzschild
 finite temperature $ds^{2} = d\eta^{2} + C \cosh^{\frac{4}{d}} \left(\frac{d\eta}{2}\right) \left[-\frac{\sinh^{2}\left(\frac{d\eta}{2}\right)}{\cosh\left(\frac{d\eta}{2}\right)} dt^{2} + dx^{i} dx^{i}\right]$ horizon $\eta = 0$

Outline

- ✓ Introduction
- ✓ Deep learning
- ✓ AdS/CFT
- Deep learning and AdS/CFT
- Summary

Holographic modeling

- Two approaches
- Top-down embed into string theory
- Bottom-up prepare a phenomenological model

- conventional holographic QCD models in the bottom up approach
 - Hard wall, Soft wall,...

[Erlich, Katz, Son & Stephanov (2005), Da Rold & Pomarol (2005),...]

DL holographic modeling

Conventional approach

DL holographic modeling

Our approach
 [Hashimoto, SS, Tanaka, Tomiya (1802.08313)]

Deep Learning

Setup

We consider general backgrounds (not sol. of Einstein eq.).

$$ds^2 = d\eta^2 - f(\eta)dt^2 + g(\eta)dx^i dx^i$$

• bulk scalar dual to boundary op. \mathcal{O}

$$S = \int d^{d+1}x \sqrt{fg^{d-1}} \frac{1}{2} \left(-g^{MN} \partial_M \phi \partial_N \phi - m^2 \phi^2 - \frac{\lambda}{2} \phi^4 \right)$$

general metric with horizon

propagation in neural network

propagation in neural network

• In the appropriate metric, output should satisfy the correct boundary condition.

background metric = parameters to be updated

Neural network rep. of EOM

• Suppose the field is homogeneous $\phi(\eta, t, x^i)$

$$\partial_{\eta}\pi + h(\eta)\pi - m^2\phi - \lambda\phi^3 = 0, \quad \pi = \partial_{\eta}\phi$$

Neural network rep. of EOM

• Suppose the field is homogeneous $\phi(\eta, t, x^i)$

$$\partial_{\eta}\pi + h(\eta)\pi - m^2\phi - \lambda\phi^3 = 0, \quad \pi = \partial_{\eta}\phi$$

• Discretize η $(\eta_{ini} > \eta > \eta_{fin})$

The metric function $h(\eta^{(n)})$ plays the role of weights!

Boundary cond. at the horizon

 $\partial_{\eta}\pi + h(\eta)\pi - m^2\phi - \lambda\phi^3 = 0, \quad \pi = \partial_{\eta}\phi$

Near the horizon $\eta \sim 0$, $h(\eta) \sim 1/\eta$

Boundary cond. at the horizon

$$\partial_{\eta}\pi + h(\eta)\pi - m^2\phi - \lambda\phi^3 = 0, \quad \pi = \partial_{\eta}\phi$$

Near the horizon $\eta \sim 0$, $h(\eta) \sim 1/\eta$

Suppose the field is finite.

$$\eta h(\eta)\pi = \eta(-\partial_{\eta}\pi + m^{2}\phi + \lambda\phi^{3}) \to 0 \quad (\eta \to 0)$$

Boundary cond. at the horizon

$$\partial_{\eta}\pi + h(\eta)\pi - m^2\phi - \lambda\phi^3 = 0, \quad \pi = \partial_{\eta}\phi$$

Near the horizon $\eta \sim 0$, $h(\eta) \sim 1/\eta$

Suppose the field is finite.

$$\eta h(\eta)\pi = \eta(-\partial_{\eta}\pi + m^{2}\phi + \lambda\phi^{3}) \to 0 \quad (\eta \to 0)$$

Data for learning

- Positive data $\{(J, \langle \mathcal{O} \rangle_J), y = 0\}$ correct response
- Negative data $\{(J, \langle \mathcal{O} \rangle_J), y = 1\}$

1.0 0.8 0.6 0.4 0.2 0.0 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

wrong response

If the metric function is tuned appropriately,

$$\pi|_{\eta=\eta_{\text{fin}}} \simeq 0 \longrightarrow y^{\text{output}} \simeq 0 \quad \text{for positive data}$$

 $\pi|_{\eta=\eta_{\text{fin}}} \not\simeq 0 \longrightarrow y^{\text{output}} \simeq 1 \quad \text{for negative data}$

Test learning

Can the machine reproduce the black hole metric?

4d AdS Schwarzschild

 $h(\eta) = 3 \coth(3\eta)$

• Generate positive and negative data randomly

• Learn $h(\eta)$ from the data.

 $h^{\text{learn}}(\eta) \stackrel{\textbf{?}}{=} 3 \coth(3\eta)$

Test learning Ioss function $E = \sum_{i} |y(x^{(i)}) - y^{(i)}|$

loss function < 0.0002

Test learning

Introduce a regularization

$$E \to E + c_{\text{reg}} \sum (\eta^{(n)})^4 \left[h(\eta^{(n+1)}) - h(\eta^{(n)}) \right]^2$$
$$\propto \int d\eta (\eta^2 h'(\eta))^2 \qquad (c_{\text{reg}} = 10^{-3})$$

Smooth function is preferred.

Deep learning and holographic QCD

[Hashimoto, SS, Tanaka, Tomiya (in preparation)]

- Use the result of lattice QCD.
 - quark mass vs chiral condensate [Unger (2010)]

$m_q[\text{GeV}]$	$\langle \bar{\psi}\psi \rangle \ [({\rm GeV})^3]$
0.00067	0.0063
0.0013	0.012
0.0027	0.021
0.0054	0.038
0.011	0.068
0.022	0.10

 $T \sim 0.2 [\text{GeV}]$

• Learn the metric, and compute other quantities

Data for learning

Learned metric

In this approach,

only a combination of metric compos. can be obtained.

$$h(\eta) = \partial_{\eta} \log \sqrt{f(\eta)g(\eta)^{d-1}}$$

Holographic QQ potential

 $ds^2 = d\eta^2 - f(\eta)dt^2 + g(\eta)dx^i dx^i$

If $f(\eta)$ and $g(\eta)$ are obtained, we can compute quark-antiquark potential holographically.

Evaluate a classical string action. [Maldacena (1998), Rey & Yee (1998)]

Holographic $Q\overline{Q}$ potential

 $ds^2 = d\eta^2 - f(\eta)dt^2 + g(\eta)dx^i dx^i$

If $f(\eta)$ and $g(\eta)$ are obtained, we can compute quark-antiquark potential holographically.

Evaluate a classical string action. [Maldacena (1998), Rey & Yee (1998)]

Compute QQ potential

 $h(\eta) = \partial_{\eta} \log \sqrt{f(\eta)g(\eta)^3}$ has been obtained.

 $f(\eta)~\mbox{can}~\mbox{be}~\mbox{determined}~\mbox{if}~g(\eta)~\mbox{is}~\mbox{fixed}.$

Compute QQ potential

 $h(\eta) = \partial_\eta \log \sqrt{f(\eta)g(\eta)^3}~~{\rm has}~{\rm been}~{\rm obtained}.$

 $f(\eta)~\mbox{can}$ be determined if $~g(\eta)$ is fixed.

Obtained QQ potential

The first holographic model which shows both of confinement and string breaking (as far as we know)

Outline

- ✓ Introduction
- ✓ Deep learning
- ✓ AdS/CFT
- ✓ Deep learning and AdS/CFT
- Summary

Summary

- Presented a deep neural network representation of the propagation to the bulk direction.
 - metric is weight and updated in the process of learning. Spacetime is a neural network?
- Applied it to a holographic QCD model.
 - obtained a $Q\overline{Q}$ potential.
 - there are many points which should be improved.
- Machine learning techniques may be also useful in other regions in physics.