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§ Introduction and main results
Canonical Tensor Model (CTM) — A tensor model for gravity 

•Hamilton (canonical) formalism with first-class constraints.

•Dynamical variables: Qabc, Pabc

A canonical conjugate pair of real symmetric three-index tensors

Mimicking the ADM formalism of GR to incorporate general covariance

H = naℋa + mab"ab a, b = 1,2,…, N

na, mab : “Shift“ & “Lapse“

ℋa, "ab :  “Hamiltonian” & “Momentum” constraints

{Qabc, Pdef} = ∑
σ

δaσd
δbσe

δcσf σ : Permutations of indices



The constraints

ℋa = 1
2 (PabcPbdeQcde −λ Qabb) λ = 0, ± 1

“Cosmological” constant 

"ab = 1
4 (QacdPbcd −QbcdPacd)

The constraint algebra — First class

{H(n1), H(n2)} = J ([ñ1, ñ2] + 2λ n1 ∧ n2)
{J(m), H(n)} = H(mn)

{J(m1), J(m2)} = J ([m1, m2])
ñbc ≡ naPabc

Non-linearity exists

H(n) ≡ naℋa J(m) ≡ mab"ab

Not a genuine Lie algebra
Similar structure as ADM

: SO(N) generators

(n1 ∧ n2)ab ≡ n1an2b −n1bn2a

depending on g μν .

(unique under some reasonable assumptions) 



Classical correspondences to GR

•N=1 agrees with mini-superspace approximation of GR. 
λ plays as the cosmological constant. 

•Taking the (formal) continuum limit

S = ∫ d Dx [2R − 1
2 (∇ϕ)2 −e−αϕ + higher spins/derivatives]

Constraint algebra → Constraint algebra of ADM formalism

EOM → Equivalent to a GR system in Hamilton-Jacobi formalism

Pabc → Pxyz a, b, c ∈ℕ x, y, x ∈ℝD, x ∼ y ∼ z
N → ∞

α = 6 −D
8(D −1)

Y.Sato & NS

Y.Sato & NS

H.Chen, Y.Sato & NS



CTM is straightforward to quantize

•First-class constraints being kept consistent (no anomaly).

•Exact physical wave functions (states) can be obtained.

•The exact wave functions have large peaks at Lie-group symmetric 
configurations for           .   — Emergence of Lie-group symmetries

ℋ̂a |Ψ⟩ = "̂ab |Ψ⟩ = 0

Encouraging toward spacetime emergence

Pabc

| (P )|2 h P = P (h ∈H)

Generalized Airy functions
G.Narain, Y.Sato & NS

D.Obster & NS

λ > 0

[Q̂abc, ̂Pdef ] = i∑
σ

δaσd
δbσe

δcσf
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Real universe

Birth from quantum tunneling

The Airy function is often used as a wave function of the universe. 



The question we answer in this talk

Continuum limit was a formal one in the previous works. 

Pabc → Pxyz a, b, c ∈ℕ x, y, x ∈ℝD, x ∼ y ∼ z
N → ∞

Namely, the existence (emergence) of space was an input.

Rather we want to obtain emergent spaces as peaks of the wave functions.   

Can we interpret a value of a tensor as a space ? Pabc = space ?

Pabc

| (P )|2 Space ?



The answer
Using tensor-rank decomposition & persistent homology
      — important mathematical techniques in data analysis

Pabc ↔ a!space For finite N  (but large enough)

Pabc(t) ↔ a!spacetime

Eg. Time-evolution of two-sphere 

Classical solutions

In classical CTM, this provides 
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§ Tensor-rank decomposition and the notions of point & space
The problem of formulating points from tensors is hard to grasp. What is 
the question ?
I had been wondering for several years, ending up with difficulties.

One would try the following, but they do not work : 

(i) Diagonalize the matrix Mab ≡ PacdPbcd

Corresponding to singular value decomposition (SVD) for tensors.
This ends up with zero modes as the most important contribution. 
Non-local modes are more important. Hence one cannot find points 
from such a procedure, since points are local.

(ii) Diagonalize         as much as possible:Pabc Pabc = eaδabδbc + ⋯
• No standard procedure. Non-linear problem hard to solve.
• Turns out to be essentially wrong. The procedure implicitly 

expects the number of points to be        , but it is rather            as 
we will see.                   

≤N O(N2)



One day I read the following chapter of a book by chance :

§9 r-term Approximation, 
in “Tensor Spaces and Numerical Tensor Calculus” by W. Hackbusch.

I wrote a simple Mathematica program to obtain the approximation for 
tensors, and I realize that this approximation gives the notion of points !

In fact, I bought the book several years ago, but did not notice this 
particular chapter important for me for several years, because this book 
is written by a computer scientist, has about 500 pages, and contain 
various topics.



A point :  the simplest tensor P111 ≠0 Others = 0

Taking into account the kinematical symmetry O(N) of CTM,

A point: Pabc = vavbvc va : a real N-dim vector

Any points are equivalent except their sizes —  Tensor analogue of 
equivalence principle.

A space : a collection of points

e.g.

Pabc =
R

∑
r= 1

vr
avr

bvr
c R: the rank of a tensor P 

This is called tensor-rank decomposition of a tensor.

for minimum R.

Now the answer 



This decomposition of a tensor into a number of vectors is known as 
the tensor-rank decomposition and has a long and multi-discipline 
history. Seems to have been “discovered” a number of times.

1927 F. L. Hitchcock
1970 J. D. Carroll and J.-J. Chang
1970 R. Harshman …

Called with different names in various fields such as MathPhys, Chemistry, 
Pshycometrics, Mathematics,…

Polyadic.., Generalized Eckart-Young, Parafac, Multi-mordal factor, CP, 
r-representation, Rank-r decomposition, Rank-one decomposition, 
Waring’s problem, R-th secant variety of Serge/Veronese variety, 
Tensor-rank decomposition, etc.

Customarily called CP-decomposition in data analysis/computer science

We use tensor-rank decomposition as a neutral mathematical word. 



A typical usage of the decomposition: Blind source separation (BSS)

Where is the terrorist ?

Other usages:
Complexity of arithmetics, Fluorescence spectroscopy, Nervous system 
for muscle, Evaluate intelligence, Geophysics, Analysis of MRI data, 
Data-mining,… 

ya(t) = va
ixi(t) Pabc ≡ ⟨ya(t)yb(t)yc(t)⟩t = ∑

i
vi

avi
bvi

c

CIA

CIA

Observed data Unknown sources

Tensor rank decompositionUnknown coefficients



Recommended references

Easy introductory review: 

P. Comon, “Tensors: a Brief Introduction,” IEEE Signal Processing Magazine 
31 no. 3, (May, 2014) 44–53. https://hal.archives-ouvertes.fr/hal-00923279. 

Mathematically rigid comprehensive book:

Landsberg, J. M., Tensors: Geometry and Applications. American 
Mathematical Society, Providence, 2012. 

More comprehensive reviews:

P. Comon, X. Luciani, and A. L. F. de Almeida, “Tensor decompositions, 
alternating least squares and other tales,” Journal of Chemometrics 23 no. 
7-8, 393–405. https://onlinelibrary.wiley.com/doi/pdf/10.1002/cem.1236. 
P. Comon, G. Golub, L.-H. Lim, and B. Mourrain, “Symmetric tensors and 
symmetric tensor rank,” SIAM Journal on Matrix Analysis and Applications 
30 no. 3, (2008) 1254–1279, https://doi.org/10.1137/060661569. 



The properties of the tensor-rank decomposition

Essentially different from the matrix case Mab =
R

∑
r= 1

vr
avr

b

R=N with probability one for randomly given        .

In the matrix case,

The decomposition is not unique : vr
a → Lr

r′ !vr′ !
a , L ∈O(N)

There is a systematic procedure: Eigenvalues/vectors.

In the tensor case, on the other hand, 

No essential differences between real and complex cases

The decomposition is essentially unique (No degeneracies like above). 
The basic reason for the ability of BSS.
The formulas for general ranks (ranks with finite probabilities) are 
only known for limited cases, such as the complex symmetric case. 
Unknown for real cases in general situations (only in special cases).

A standard systematic procedure for the decomposition is unknown. 

Mab

Pabc =
R

∑
r= 1

vr
avr

bvr
c



Rg (w, N) = ⌈ 1
N (N + w −1

w )⌉

Alexander-Hirschowitz theorem (1995)

The general rank (rank with probability one) of  a symmetric 
complex tensor with w indices is given by 

with the following exceptions : 

Rg (2,N) = N

Rg (w, N) = ⌈ 1
N (N + w −1

w )⌉ −1 (w, N) = (3,5), (4,3), (4,4), (4,5)for



1. Suppose            is given.Pabc

The actual practical procedure — Numerical optimization

2. Assume a value of R.

3. Then solve

min
vr

a

Pabc −
R

∑
r= 1

vr
avr

bvr
c

2

4. If the remaining error is too large, change R to larger values and repeat.

R cannot be made arbitrary large, because the minimization 
problem becomes ill-defined.
 (             and               tend to cancel with each other).vr

avr
bvr

c vr′�
a vr′ �

b vr′�
c

We made a Mathematica and a c++ program for the optimization. 
(Some Matlab programs by others are also available on the net.)



§ The notion of neighborhood

From the tensor-rank decomposition

A point i = vi
a ∈ ℝN

It is natural to define neighboring points by 

6(i, c) = {vj | vi ⋅ vj > c}
The value c determines the range of a neighborhood. 
Large c, smaller neighborhood, and vice versa. 

vi

vj

π
2 Uncorrelated independent points, if vi ⋅ vj = 0



§ Fuzzy spaces
It is not true that any tensor Pabc corresponds to a continuous space through 
the tensor-rank decomposition. Generally it is just a collection of points, not 
corresponding to any continuous spaces.

However, there is a systematic procedure to construct a tensor 
describing  a continuous space with any dimension, topology, and 
geometry. This will be presented by Taigen.

Rather than describing the general procedure (which is in our paper), let us 
restrict ourselves to spheres with any dimensions in this talk.



Fuzzy two-sphere S2

Essentially,

P(l1m1)(l2m2)(l3m3) ∼ ∫S2
dω Yl1m1

(ω)Yl2m2
(ω)Yl3m3

(ω)

More precisely,

Spherical harmonics

P(l1m1)(l2m2)(l3m3) = ∫S2
dω Ỹl1m1

(ω)Ỹl2m2
(ω)Ỹl3m3

(ω)

Ỹlm =

1
2 (Ylm + Y*lm) e−l2/L2 (m > 0)

Yl0 e−l2/L2 (m = 0)
1
2i

(Ylm −Y*lm) e−l2/L2 (m > 0)

a = (l, m) ( |m | ≤l ≤L)

Regulator to smooth the cutoff

Cut-off for the modes
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Fuzzy 2-sphere L=5 R=72

vi ⋅ vjHistogram of 

Self
Nearest
neighbors

Most of them are mutually independent.



Eg. L=5 (N=36), R=72 Edges drawn if vi ⋅ vj > 0.2



The construction can straightforwardly be extended to other cases.

•Any dimensional fuzzy spheres

n-dimensional spherical harmonics Yl1l2…ln(θ1, θ2, …, θn)
| l1 | ≤l2 ≤⋯ ≤ln ≤L

P(l1…ln)(l′ !1…l′!n)(l′!′ !1…l′ !′!n) = ∫Sn
dω Ỹl1…ln(ω) Ỹl′!1…l′ !n

(ω) Ỹl′!′!1…l′ !′!n
(ω)

Eg. Fuzzy three-sphere 

N=55, R=120

Really ?

How can we be sure ?



Persistent homology can be used to recognize global topologies of 
point sets with mutual distances.

This will be presented by Taigen.

Concerning this question, one day I read an article by chance, and was 
deeply impressed :

物理学会誌　2017年9月号

ランダムの中に見る秩序―パーシステントホモロジーとその応用― 

平岡裕章，西浦廉 

Order in Disorder: Persistent Homology and Its Applications 
by Yasuaki Hiraoka and Yasumasa Nishiura 
In BUTSURI, September volume, 2017



The shell region                    of an inner point should be         ,    
if the base space has D dimensions.

Persistent homology can also be used to
• determine the topological dimension of data points
• distinguish inner and boundary data points

SD−1

r1

r2

r1 < r < r2

The shell region of a data 
point on a boundary 
should have the topology 
of a disk.

A comment: 



Recommended references :

TOPOLOGY AND DATA
G. Carlsson 
Bulletin (New Series) of the American Mathematical Society, Vol 46, 
Number 2, April 2009, Pages 255–308

Mathematical review by the founder : 

JAVAPLEX TUTORIAL 
H. Adams and A. Tausz 
http://www.math.colostate.edu/%7Eadams/research/javaplex_tutorial.pdf

Quick practical reference :



 n-Torus, Strip, Mobius strip, Klein bottle,… 

The construction and checking can straightforwardly be generalized to

This will be presented by Taigen.

By using persistent homology, the realization of the three-sphere can be 
checked.



       should be taken larger for larger             .

§Distances between points
More detailed distances between points (not just neighborhoods) can be 
determined by considering virtual diffusion process over points. This is 
also commonly used in data analysis.

i j
vi ⋅ vj

d
ds

ρi(s; i0) = Kijρj(s; i0)

ρi(0; i0) = δii0

Kij vi ⋅ vj



ρ(s, r) ∼ s−D/2 exp(−r2/s)

! " # $ % & ' !

()!

()"

()#

ρ
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()(*

()!(

()!"

ρr2 = 1 r2 = 3

r r = (speak)2



The canonical tensor model (CTM) motivates the following form of K:

Kij = β(i)−1β( j)−1wi ⋅ wj −δij ∑
k

β(k)−2

∑
j

wi ⋅ wjβ( j)−2 = 1

The complication from       is because CTM contains a scalar field.β

Solving for wi and β(i)

Pabc = ∑
i

1
β(i)2 wi

awi
bwi

c

The derivation is skipped in this talk. See our paper, if you are interested.



§ Time evolutions of spaces in CTM

Pabc ~ A space with geometric structure

EOM of CTM

d
dt

Pabc = {Pabc, H} = −ndPdaePebc −ndPdbePeca −ndPdcePeab + shift

CTM defines              → a spacetime with geometry 

(i) Time evolution increases the number of points forming a space.

(ii) Time evolutions of homogeneous spheres agree with the EOM of 
the GR system previously obtained. 

Pabc(t)

We have argued

The claims we will show are
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As time evolves, more points (larger rank R) are necessary to suppress the 
error of the tensor-rank decomposition. This roughly means that the 
complexity of the space evolves to necessitate more points to describe it.

ΔP2 ≡ (Pabc −
R

∑
i= 1

vi
avi

bvi
c)2

(i) Time evolution increases the number of points.

Fuzzy two-sphere with N=36Error ratio

Time



(ii) Time evolutions of the homogeneous spheres agrees with the EOM 
of the GR system previously obtained.

The EOM of the GR system tells

d
dt

β = −9nβ2 + derivative!&!higher!terms

d
dt

βμν = −15nββμν + 2nβμμ′!βνν′!Rμ′!ν′! + derivative!&!higher!terms

We compared these for the homogeneous fuzzy               through the 
procedure using the virtual diffusion process. 

S1,2,3

β(t) = 1
t − t0

βμν(t) ∝ (t − t0)−5
3 (1 + cR(t − t0)−2

3 )
−1

Constant curvature for 
homogenous spaces

Ignored for homogenous spaces 
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compared with ⟨β(i, t)⟩i

Perfect matches



●

●
●
●
●

●

●

●

●

●

●

●
●
●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
■■■■■■■■■■■■■■■■■■

■

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

▲▲▲▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲

● !"#$"%&'
■ !(#'&%"&'

◆ !$#))%"(*
▲ !$#))%"(*+,

!! !" !# # " !
$%&"'##$

()"

()*

()+

(),

#)(

!-$%&"./%0$%-$%&"'##$
●●●●●●●●

●●●●
●●

●●
●

●
●

●
●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ ◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆ ▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲

● !"#$"%&'
■ !(#'&%"&'

◆ !$#))%"(*
▲ !$#))%"(*+,

! "# "! $# $!
%

$##

&##

'##

(##

"###

"!)*+,

The inverse of the lowest eigenvalue of                compared with −Kij(t) β/βμν(t)
~ The square sizes of the spaces

Quite a good match except for large time regions, where the sizes of the 
spaces become too large in comparison with the numbers of points.

(i.e. The distances between points become macroscopic, and continuum 
description becomes invalid.)



§ Summary and future prospects
Tensor rank-decomposition and persistent homology, well known 
important techniques in data analysis, and virtual diffusion process 
provide the spacetime interpretation of the canonical tensor model (CTM).  

The initial investigation of the EOM of CTM for the homogenous fuzzy 
spheres               agreed completely with the GR system previously 
obtained in a formal continuum limit of CTM.

S1,2,3

We may expect interdisciplinary researches in the future.

Classical/Quantum gravity

Canonical tensor model
Data analysis

Spacetime Data

A microscopic description of spacetime


