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Motivation

T-duality
* |lA string on a background IIB string on another background

Observed values by strings coincide.

“Space observed by strings are the same.”

Expected to be “geometric principle of string theory.”

Q Is there spaces T-dual to each other? 0o X 9 = i€y OpX 2
A. Yes: moduli spaces of Riemann surfaces embedded on-shell in the backgrounds.
X: XM Xz M

Extend off-shell
Extend non-perturbatively. (Consider collections of >|-—.,,,st.- )

* |Spaces where curves parametrized by 7(—oo < T < 00)
reproduce the right moduli space of the Riemann surfaces in
a target manifold.
criterion to define string topology
string geometry

« Construct string theory by regarding string geometry as geometric principle.
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1. String geometry



1. 1 String model space



Global time T

« On X, there exists an unique Abelian differential dp that has simple poles with residues f; at Punctures Pi where
>, f; = 0, if itis normalized to have purely imaginary periods with respect to all contours.

P
+ Global time 7 is defined by @ = 7 + i5 = f dp  (Krichever, Novikov 1987)

T = 400 (—o0) onPiwith f; >0 (f; <0)
« Determine f;

0. >, f; = 0: f; conservation law (if we choose the outgoing direction as positive.)

1. Divide Pi s to arbitrary incoming and outgoing sets.

2. Divide -1 to incoming fi= and 1 to outgoing f! = 1 1/3 173

v N; Nout \J V

f; are determined uniquely on 3~ -

\

T is uniquely determined. A
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String model Space E Collection of string states [>, X 5(7), ]

- X7 29l y...usl manybody states of strings R

Xp(7T): > |z — RY v

R 7_-

D : backgrounds (B, dilaton)
A >
, T
- [, X5(7), T]: equivalence class

at T 22 400 S C2y.-.-uC?

Here, >|7zeq = > 7224 000 D($ = to0) = (T = +00)

¢ v

- B = HIE Xp (M), 71}
D

(Z,XD(T),T = _o0) ~ (X, D(T),"l_’ = _o0) ~ (Z, X"( ), T £ —o0)



1. 2 String toplology



String topology

» € open neighborhood

U(IE, Xop (o) ol ©) = { (£, Xp(), 71 | VIF = o2 + IXp(P) = Xop(R)I? < e}

B’d
st IXp(P) = Xpo(Fo)|* = fo% d7(X"(7,5) — X2 (70,5))? \v

/

» U is defined to be an open set if there exists € such that an € open neighborhood C U
for an arbitrary point P € U.

» The open sets satisfies the axiom of topology.
(1) O,Eelu
(1) U1, UpoeU=UiNUcelU
(2i1) Uy €U = UyepaUy €U



1. 2 String manifold



General coordinate transformation

> doesnottransformto 7, X p and vice versa,
because 2= is a discrete variable, whereas T, XD are continuous variables
by definition of the neighbourhoods.

T and 0 do not transform to each other because the string states are
defined by 7 constant lines.

Under these restrictions, the most general coordinate transformation is given by
[omn(5,7), 7, XE (D] = Wn(3'(3), 7 (F, X 5 (), 7 (F, X p(7)), X EF)(F, X p(7))]

> <—> hpmn(a,7) upto diff X Weyl

String manifolds 9)1 are constructed by patching open sets of E by general coordinate transformations.



Example of string manifolds Mp

+ Mp =A{[x,zp(®), 7]}

where p(7T) : |7 =& M which has target mertic ds? = dg;’f)(%, 5)dz'h(7,5)Gu(zp(7, 7))

» D: backgronds including the target metric . D is fixed on a string manifold.

* Open sets of M p Open sets of E
homeomorphic

diffeo: [, 2p(7), 7] = [, X5 (7), 7]

Xp(T)(@p(7T)) Is induced by the diffeomorphism transformation of the target space
r— X = X(x)
v

Xp(7,0) = X(zp(7,0))



Example of string manifolds Mp (cont'd)

 Trajectories in asymptotic processes on M p represents
2-dim. Riemann surfaces in the target manifold.

reproduce the right moduli space.

- Y
DI/

ml




Example of string manifolds Mp (cont'd)

» By a general trajectory,
string states on different two-dimensional Riemann surfaces that have different genus numbers
can be connected continuously.

v.s. the moduli space

N/ A

T(tl)

AN/

v

» String geometry is expected to possess non-perturbative effects.



1. 4 Riemannian string manifold



Riemannian string manifold

* cotangent vectors

cotangent space of manifolds are spanned by continuous variables:

dX'5(7,7) dr
" Treat (45) as indices. ! dXé (I =d,(po))
dXL%“&) dX% summarize
Take summation by/' doe(o,T) (e := \/ﬁ)
Invariant under & + & (&)
Transformed as scalar under 7 — 7/(7, X)
* metric

ds?(h,7, X p) = Gr;(h, T, XD)dX_{“)dXiZ)



2 Non-perturbative formulation of string theory



Non-perturbative formulation of superstring theory
: Z=/DGDA6_S

1 _ 1
5= / DhDFDX pVG(~R+ ;GNG2G N2y gy Fr, )

Dh : the invariant measure of hy,, on > divided by
the volume of the diffeomorphism and the Weyl transformations.

diff x Weyl

Fyy : field strength of an u(1) gauge field Aj

* The theory is background independent.



diffeomorphism invariance

- Under (7, X) — (7(7, X), X'(7, X))
Gry(h,7,X) :symmetric tensor  A;(h, 7T, X): vector
Action is manifestly invariant

Under hypp — A/ Gry(h,7,X) and A;(h,7,X) are defined as scalars

mn'

Under & — & (&), [ the fields that have index & transform as scalars.

/ doe(o,T) is invariant.

|

The action is invariant under |0 — 5’(5)

* In a supersymmetric case, the action is invariant under (, 9%) s (5/(,8),8 “(7,))



3 String geometry solution that represents
a perturbative vacuum of string theory



Pertu rbative vacuum SOlution (Extension of Majumdar-Papapetrou solution (1947,1948))
e3(3,7)

VR(Z,T)

. ds2 QAE(B)NQ(X)(dXd)Q—I—/d /da INZD(X)

A ] 2_2DV2A5(E)N(X) A=y =0
¢ W2o-p oy ’ () =

is a solution to the equations of motion.  (hmn(a,7), T, X*(o,7) areall independent.)

5,5y (wandX HP)dx W)

- 1 = _ — -
where p(h) = . / d&\/ﬁRE ( Ry is the scalar curvature of B, )
vy

D= / doed(,5)(uz) = d2m8(0)  (index volume)

NX) = (X)) = —— ] d5 e,y XH95X"
T+ 0 (X) Ji-T

» We derive all the perturbative string amplitudes on flat spacetime from the fluctuations around this solution.

« The solution is defined on M p where the target metric is fixed to be flat .
* The equations of motion are differential equations with respectto 7, X#(z, T)

The functions of p,,,,, (7, 7) are constants in the solution (determined by the consistency of the fluctuations.)



4 Derive all order scattering amplitudes of perturbative string



Propagators around the perturbative vacuum

1. Expand the action around the perturbtive vacuum up to 2@ order: G5 = Gr7+ G
AI — AI —I— AI
2. Take G — O. Then, the fluctuations of the gaguge field are suppressed.

3. Take the harmonic gauge to fix diffeo. Then, the gauge fixing term is added.

1 —1/_;, ~ 1. ~\2
Stie = G—/DhDFDX\@E (vJ(GU - 5GMG))
N

4 . Take slowly varying field limit:

~ 1~

Grg— =Gy
o

derivative expansion | and ao—0

OxGry — 0xGry

Ox01Gry — adgdrGry

5. Normalize to obtain canonical kinetic term:  H;;:= Z; ;G

6. Take D — oo



Propagators around the perturbative vacuum (cont'd)

1. 0 190 —\ A
» S+ Spip = /DthFDX—HH(—z’—_, —i———, X,h)H +(terms do not mix with H)
4 oT e 00X

H is one of the modes of H (145)

11 2 2m — =/1 2 1__2 2 ——0
Hpz,px, X, ) = 5o op2 + [z (VA (G057 + 52 20551 + ign” 05 Xk

i

_ 2 =~_=0 =_
ADM decomposition hmn = (n —I:non T—lg )
ng e
- Differential equation for the propagator A (h,7, X; h,/7,’ X")
H(—i—, —i——, X, ) Ap(h,7,X; b/7/ X)) =6(h - h)é(F -7 (X — X))
oT e 00X



Schwinger representation of the propagator = path integral of the perturbative strings

* In order to compare with perturbative strings,
Take the Schwinger representation of the propagator by using the first quantization formalism.

operators (}az, 7, X) conjugate momenta (pz, P7, Px) eigen states |h, 7, X >
.H( a 18 A 7, = = N T T/ - —/ /
—i—, —t=———, X, W) Ap(h, 7, X; h, 7, X)) =6(h—h)6(T —7)6(X — X")
ot e 0X
J

Ap(h, 7, X; B/ 7/ X" = <k 7 X|H (57 0x, X, R)|R/ 7/ X' >
o0 T = _TH\T I =1~
/O dT < h,T, X|e \h, 7, X" >

/ o0 TH |~ T =
C Ap(X: X)) = /0 AT < X|pure THIX! >;, < X|owt := [ Dh < 7,7 = 00, X|
X" >i:= | DM, 7 = —00, X' >



Schwinger representation of the propagator = path integral of the perturbative strings (cont'd)

« path integral representation
Ap(X; X"
X
— fX, DTDhDFDX f DprDp=Dpy

1 . d . d _ . d
exp (— | dt( = ipr (S T® — ipr®) 27O — ipx (@) - LX)

+T(t)H(pz(t), px (£), X (¢), 5)))

* By introducing pr(t), constantT — field T(t)

* move onto Lagrange formalism from the canonical formalism by integrating out p7, px .



Schwinger representation of the propagator = path integral of the perturbative strings (cont'd)

. Ap(X; X')
X
- DTDhDTDX Dpy

X’
exp( [ at(—ivr@) Sy + 297 (00

2
T(t)" dt )

+/d5\/ﬁ( OO0 z)atX“(rf 7,00 X (7,7, t) + hOLo, X1 (5, 7,1)05 X u(5, 7, t)

+%E“T(t)85X“(5fa D0 Xl $’t))))

« This path integral is obtained

d
if F1(t) := aT(t) = 0 gauge is chosen in the next covariant form w.r.t. t diffeo:



Schwinger representation of the propagator = path integral of the perturbative strings (cont'd)

e Covariant form w.r.t. t diffeo

Ap(X;: X
X _ 1 _ 1 dr(t) 5
— 7, |  DITDhDFDX ex —/ dt( A
1 /) T D( o at+ pT(t)( o )
= 1_ 1 _
—I—/d&\/ﬁ(ihoom@){“(c—r,?,t)atXﬂ(c_T,F,t) + nOto X1 (5,7, 1)85X,,(5, 7, t)
1-
—I—EhllT(t)a(;X”(&, T,t)05Xu(o, T, t)))) * T'(t) is transformed as an einbein.
, dr
« T'(t) disappears under — = T'(t) :
dr’
T 27/00 = 1 /- dr(t dr'(t
R0 = TP R = LE (T = 2Ty
701 __ 7'01
ROl = Th 1
il E’ll p = —p

I * This action is still invariant under the diffeomorphism

with respect to t if 7 transforms in the same way as t.
« Take 7 = ¢ gauge.



Schwinger representation of the propagator = path integral of the perturbative strings (cont'd)

- Ap(X; X')

X — N\ _
— 7 [  DhDXexp (—/d%fd(}x/ﬁ(R(aF)
X/ 47

1 _ 1.
+5h200:X1(7, )0 X (5, 7) + BP0 X1(3, )05 Xu(5, 7) + Sh 10 X1 (3, )05 X (3, F)))

« Diff X Weyl transformation gives

/ X Ay .—S
Ap(X;, XH)=Z v DhDXe e 98

Ss = /_o:o dT/dO’\/h(O‘, T) (%hmn(a, 7)OmXH* (o, T)anXH(O',T)>

X : Euler number

» We obtain the all-order perturbative scattering amplitudes that possess the moduli in the string theory,
by inserting asymptotic states.

» The consistency of the fluctuations around the backgrounds —> the critical dimension d=26.
(d=10 in the supersymmetric cases)



5 General supersymmetric case that includes open strings



Supersymmetric generalization including open strings
Ssofar  _____________ |Genera

Riemann surface > super Riemann surface > with or without boundaries
Xp:iZ|z— RY Xp:XF— R? Boundaries have CP factors and map to D-branes
D : background (B, dilaton) D: background

(B, dilaton , RR, submanifolds of M that represent D-branes and O-planes
gauge fields on D-branes)

E = U{[Z,XDT(»F),F]} (T=lIA, IIB, I)
E = |[{[= X)), 7]} Dr
D

« For T=I, <2 projected

* For T=lA (T=IIB, I), HA (lIB) GSO projection is attached on
asymptotic states

model space

* We can define GSO projection
because functions over the model space are functions of 1/

— 1L
B QM SAZ Tl
XDT_X 4+ 6 'I,Z)a-|-29 F
index (uo) (pna0)



Non-perturbative formulation of superstring theory
7 = /DG’DAe_S

_ 1 11
S = [ DEDFDX pVG(~R+ SGNGM2GT 2 5 )

* The theory is background independent.



Supersymmetry is a part of the diffeomorphisms symmetry
(7,0%) — (5'(5,0),0“(5,0))

[EM A(aa’?)g&)aX%T(F)a?] > [E}\J A(a-,(a-:é)aFaéfa(E-ag))aX‘lng(’F)(XDT))a’F]

These are dimensional reductions in 7 direction of the two-dimensional N = (1, 1) local susy trans.

0
535

supercharges  £%Qq = 50‘(8%2_@ + i'yéﬁgﬁ

The number of supercharges is the same as of the two-dimensional ones.

The supersymmetry algebra closes in a field-independent sense as in ordinary supergravities.



Derive the all order perturbative superstring scattering amplitudes

We obtain the all-order scattering amplitudes that possess the supermoduli in the perturbative type IIA, 11B and
SO(32) type | superstring,
if we consider the fluctuations after fixing IIA, 11B and SO(32) type | charts, respectively.

* These amplitudes are derived from the single theory.

» The consistency of the fluctuations around the backgrounds — d=10

» We obtain amplitudes of the superstrings with Dirichlet and Neumann boundary conditions in the normal
and tangential directions to the D-submanifolds, respectively.

.

D-submanifolds represent D-brane backgrounds where back reactions from the D-branes are ignored.



6 String geometry and a new type of supersymmetric matrix models




String geometry and a new type of supersymmetric matrix models

Gravity and a matrix moldel (Hanada-Kawai-Kimura 2006)

1 1
Equations of motion of Se = G— / dloiﬂx/g(—R + ZGNF/WFW/)
N

] equivalent
Equations of motion of Sm = tr(—[Au, Av][A¥, A”]) where we replace A;, =V,

String geometry and a matrix model

1
Equations of motion of S = /’DEDFDX\/@(—R + ZGNGI]'IQGJ]'J2FI]_J1FIQJ2)
] equivalent
Equations of motion of Sy = /DEt’r(—[AI(E), A5(E)][AYE), 47 (E)]) where we replace A} = V7

: T (extended) large N reduction ?
More simple

Swm, = tr(—[Ag, Aj] (AL, A7])  (a supersymmetric matrix model that has oo indices I = (d, (u&8)))

is interesting.
J Worldsheets can be derived in general by perturbations of matrix models



7 Unification of particles and the space-time




Unification of space-time and particles

* space-time and string geometry

asymptotic trajectory on 901 with target M = string world-sheet in M acto trajectory of a particle in M

X
<%
Space-time M is identified by: observing all trajectories of a particle in M. %M

2N pis observed as M macroscopically.

Conversely, we see a string, if we microscopically observe a point of the space-time.

« particle and string geometry
A fl ion of Mp = strin rticl
uctuation o D = string Macro particle

Conversely, we see a string, if we microscopically observe a particle.

 unification of space-time and particle

Macroscopically,  space-time = string manifold particle = a fluctuation of string manifold



