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Motivation
T-duality
• IIA string on a background IIB string on another background

Observed values by strings coincide.
“Space observed by strings are the same.’’

Expected to be “geometric principle of string theory.’’

Q. Is there spaces T-dual to each other?
A. Yes:  moduli spaces of Riemann surfaces embedded on-shell in the backgrounds. 

Extend non-perturbatively.
• Spaces where curves parametrized by                                   

reproduce the right moduli space of the Riemann surfaces in 
a target manifold.

string geometry
• Construct string theory by regarding string geometry as geometric principle.

criterion to define string topology

(Consider collections of                    . ) 
Extend off-shell



1. String geometry



1. 1 String model space



• On  , there exists an unique Abelian differential  that has simple poles with residues  at Punctures Pi where 
, if it is normalized to have purely imaginary periods with respect to all contours.

Global time

(Krichever, Novikov 1987)

• Determine  

• are determined uniquely on 

0. ︓ conservation law (if we choose the outgoing direction as positive.)

1.  Divide Pi s to arbitrary incoming and outgoing sets.

on Pi with 

-1/2 -1/2

1/3 1/3 1/32.  Divide  -1 to incoming                       and 1 to outgoing  

• is uniquely determined.

• Global time     is  defined by



String model space E
many body states of strings

: backgrounds (B, dilaton）

・

・

・ ︓equivalence class

Here,

・

Collection of string states

at



1. 2 String toplology



String topology

• The open sets satisfies the axiom of topology. U
εP

• open neighborhood

s.t.

• U is defined to be an open set if there exists     such that an     open neighborhood     U 
for an arbitrary point P      U. 



1. 2 String manifold



General coordinate transformation
• does not transform to and vice versa, 

because       is a discrete variable, whereas  are continuous variables 
by definition of the neighbourhoods.

• and       do not transform to each other because the string states are 
defined by  constant lines.

• Under these restrictions, the most general coordinate transformation is given by 

up to  diff × Weyl

• String manifolds      are constructed by patching open sets of E by general coordinate transformations. 



Open sets of E
homeomorphic

• Open sets of 

Example of string manifolds 
•

where which has target mertic

• D: backgronds including the target metric .              D is fixed on a string manifold.

diffeo:

Is induced by the diffeomorphism transformation of the target space



• Trajectories in asymptotic processes on represents 
2-dim. Riemann surfaces in the target manifold. 

reproduce the right moduli space. 

Example of string manifolds         (cont’d) 

M



• By a general trajectory,
string states on different two-dimensional Riemann surfaces that have different genus numbers
can be  connected continuously.

v.s. the moduli space 

Example of string manifolds         (cont’d) 

• String geometry is expected to possess non-perturbative effects.



1. 4 Riemannian string manifold



cotangent space of manifolds are spanned by continuous variables:
• cotangent vectors

• metric

Treat as indices.
summarize

Riemannian string manifold

＝
：

＝
：

Take summation by

Invariant under

Transformed as scalar under



2  Non-perturbative formulation of string theory



: the invariant measure of on divided by 
the volume of the diffeomorphism and the Weyl transformations.

: field strength of an u(1) gauge field

• The theory is background independent.

Non-perturbative formulation of superstring theory

diff × Weyl

•



diffeomorphism invariance

: symmetric tensor ︓vector

Action is manifestly invariant

Under ,    the fields that have index      transform as scalars.

・ Under 

・

is invariant.

Under                        , and are defined as scalars

* In a supersymmetric case, the action is invariant under

The action is invariant under



3 String geometry solution that represents 
a perturbative vacuum of string theory



• We derive all the perturbative string amplitudes on flat spacetime from the fluctuations around this solution.

• The solution  is defined on  where the target metric is fixed to be flat . 

• The equations of motion are differential equations with respect to

The functions of                      are constants in the solution (determined by the consistency of the fluctuations.)

Perturbative vacuum solution （Extension of  Majumdar-Papapetrou solution (1947,1948))

(                                                 are all independent. )

where （ is the scalar curvature of             ) 

is a solution to the equations of motion.

（index volume）

•



4 Derive all order scattering amplitudes of perturbative string



Propagators around the perturbative vacuum 
１．Expand the action around the perturbtive vacuum up to 2nd order:

２．Take                 .        Then, the fluctuations of the gaguge field are suppressed.

３．Take the harmonic gauge to fix diffeo.   Then, the gauge fixing term is added.

５．Normalize to obtain canonical kinetic term:

４．Take slowly varying field limit:

６. Take

derivative expansion and



is one of the modes of 

Propagators around the perturbative vacuum (cont’d) 

ADM decomposition 

• Differential equation for the propagator

+(terms do not mix with    )•



Schwinger representation of the propagator = path integral of the perturbative strings

operators conjugate momenta eigen states

•

•

• In order to compare with perturbative strings, 
Take the Schwinger representation of the propagator by using the first quantization formalism. 



Schwinger representation of the propagator = path integral of the perturbative strings  (cont’d)

• path integral representation 

constant T →   field T(t)* By introducing             ,

• move onto Lagrange formalism from the canonical formalism by integrating out                .  



• This path integral is obtained

if gauge is chosen in the next covariant form w.r.t. t diffeo: 

Schwinger representation of the propagator = path integral of the perturbative strings  (cont’d)

•



* This action is still invariant under the diffeomorphism 
with respect to t if  transforms in the same way as t. 

• Take           gauge.

• disappears under                         : 

Schwinger representation of the propagator = path integral of the perturbative strings  (cont’d)

• Covariant form w.r.t. t diffeo

*           is transformed as an einbein.



Schwinger representation of the propagator = path integral of the perturbative strings  (cont’d)

• Diff  × Weyl transformation gives

︓Euler number

•

• We obtain the all-order  perturbative scattering amplitudes that possess the moduli in the string theory,
by inserting asymptotic states.

the critical dimension d=26.
(d=10 in the supersymmetric cases)

• The consistency of the fluctuations around the backgrounds



5 General  supersymmetric case that includes open strings 



So far General
Riemann surface super Riemann surface with or without boundaries

: background (B, dilaton） : background 
(B, dilaton , RR, submanifolds of M that represent D-branes and O-planes
gauge fields on D-branes)

model space

• For T=I,       projected
• For T=IIA (T=IIB, I), IIA (IIB) GSO projection is attached on 

asymptotic states

index

(T= IIA, IIB, I)

Supersymmetric generalization including open strings

Boundaries have CP factors and map to D-branes

* We can define GSO projection
because functions over the model space are functions of



Non-perturbative formulation of superstring theory

•

• The theory is background independent.



• supercharges

• The supersymmetry algebra closes in a field-independent sense as in ordinary supergravities.

• These are dimensional reductions in     direction of the two-dimensional                      local susy trans.

• The number of supercharges is the same as of the two-dimensional ones.

Supersymmetry is a part of the diffeomorphisms symmetry



• We obtain the all-order scattering amplitudes that possess the supermoduli in the perturbative type IIA, IIB and 
SO(32) type I superstring,  
if we consider the fluctuations after fixing IIA,  IIB and SO(32) type I charts, respectively.

• These amplitudes are derived from the single theory.

Derive the all order perturbative superstring scattering amplitudes

• The consistency of the fluctuations around the backgrounds d=10

• We obtain amplitudes of the superstrings with Dirichlet and Neumann boundary conditions in the normal 
and tangential directions to the D-submanifolds, respectively. 

D-submanifolds represent D-brane backgrounds where back reactions from the D-branes are ignored.



6 String geometry and a new type of supersymmetric matrix models



String geometry and a new type of supersymmetric matrix models
Gravity and a matrix moldel (Hanada-Kawai-Kimura 2006)

String geometry and a matrix model

（a supersymmetric matrix model that has         indices                               )

（extended）large N reduction ?More simple

Equations of motion of
equivalent

Equations of motion of where we replace

Equations of motion of
equivalent

Equations of motion of where we replace

is interesting. Worldsheets can be derived in general by perturbations of matrix models



7 Unification of particles and the space-time



asymptotic trajectory on        with target M = string world-sheet in M 

• space-time and string geometry

• particle and string geometry

• unification of space-time and particle

macro trajectory of a particle in M

Space-time M is identified by:   observing all trajectories of a particle in M.∴ is observed as M macroscopically.
Conversely, we see a string, if we microscopically observe a point of the space-time.

A fluctuation of          = string              particle   macro
Conversely, we see a string, if we microscopically observe a particle.

Macroscopically, space-time = string manifold particle = a fluctuation of string manifold

M M

M

Unification of space-time and particles


