Double/Exceptional Field Theory and Generalized Supergravity

Yuho Sakatani (Kyoto Pref. Univ. of Medicine)

String: T-duality, Integrability and Geometry 4-8 March 2019

Recently, various techniques of solution generating transformations in SUGRA are developed.

Yang–Baxter deformation

[Klimcik, Delduc, Magro, Vicedo, Kawaguchi, Matsumoto, Yoshida, Arutyunov, Borsato, Frolov, Hoare, Roiban, Tseytlin, Kyono, Sakamoto, Orlando, Reffert, Wulff, van Tongeren, Osten, Thompson, Araujo, Bakhmatov, Ó Colgáin, Sheikh-Jabbari, …]

• Non-Abelian T-duality

[de la Ossa, Quevedo, Giveon, Rocek, Alvarez, Alvarez–Gaume, Lozano, Klimcik, Severa, Sfetsos, Thompson, Ó Colgáin, Hoare, Tseytlin, Borsato, Wulff, ……]

Usually,

Yang-Baxter deformation or Non-Abelian T-duality

[Sfetsos, Thompson, 1012.1320; Lozano, Ó Colgáin, Sfetsos, Thompson, 1104.5196; …]

Sometimes, solutions of **"Generalized SUGRA"** are produced.

Yang-Baxter deformation

[Arutyunov, Borsato, Frolov, 1507.04239; Arutyunov, Frolov, Hoare, Roiban, Tseytlin, 1511.05795; Kyono-Yoshida, 1605.02519; Orlando, Reffert, Sakamoto, Yoshida, 1607.00795; Fernandez-Melgarejo, Sakamoto, YS, Yoshida, 1710.06849; …]

Non-Abelian T-duality

[Gasperini, Ricci, Veneziano, hep-th/9308112; Fernandez-Melgarejo, Sakamoto, YS, Yoshida, 1710.06849; Hong, Kim, Ó Colgáin, 1801.09567; …]

(Type IIB) Generalized Supergravity

[Arutyunov-Frolov-Hoare-Roiban-Tseytlin '15; (NS-NS sector) Hull-Townsend '86]

Generalized Supergravity $R_{mn} - \frac{1}{4} H_{mkl} H_n{}^{kl} - T_{mn} + D_m X_n + D_n X_m = 0,$ **Equations of motion (GSE)** $\frac{1}{2}D^kH_{kmn} + \frac{1}{2}\hat{\mathcal{F}}^k\hat{\mathcal{F}}_{kmn} + \frac{1}{12}\hat{\mathcal{F}}_{mnklp}\hat{\mathcal{F}}^{klp} = X^kH_{kmn} + D_mX_n - D_nX_m,$ $R - \frac{1}{12}H^2 + 4D_m X^m - 4X_m X^m = 0,$ $\begin{aligned} \pounds_I g_{mn} &= 0 \,, \quad \pounds_I B_{mn} = 0 \,, \\ \pounds_I \Phi &= 0 \,, \quad \pounds_I \hat{\mathcal{F}}_p = 0 \,. \end{aligned}$ $D^m \hat{\mathcal{F}}_m - \frac{X^m}{\mathcal{F}_m} - \frac{1}{\epsilon} H^{mnk} \hat{\mathcal{F}}_{mnk} = 0,$ $D^k \hat{\mathcal{F}}_{kmn} - \frac{X^k}{\hat{\mathcal{F}}_{kmn}} - \frac{1}{\epsilon} H^{kpq} \hat{\mathcal{F}}_{kpqmn} - (I \wedge \hat{\mathcal{F}}_1)_{mn} = 0,$ $D^k \hat{\mathcal{F}}_{kmnpq} - \frac{X^k \hat{\mathcal{F}}_{kmnpq}}{36} + \frac{1}{36} \epsilon_{mnpqrstuvw} H^{rst} \hat{\mathcal{F}}^{uvw} - (I \wedge \hat{\mathcal{F}}_3)_{mnpq} = 0.$ $X_m \equiv \partial_m \Phi$ $T_{mn} \equiv \frac{1}{2}\hat{\mathcal{F}}_m\hat{\mathcal{F}}_n + \frac{1}{4}\hat{\mathcal{F}}_{mkl}\hat{\mathcal{F}}_n{}^{kl} + \frac{1}{4 \times 4!}\hat{\mathcal{F}}_{mpqrs}\hat{\mathcal{F}}_n{}^{pqrs}$ $+(g_{mn}-B_{mn})I^n$ $-rac{1}{4}g_{mn}\Big(\hat{\mathcal{F}}_k\hat{\mathcal{F}}^k+rac{1}{c}\hat{\mathcal{F}}_{pqr}\hat{\mathcal{F}}^{pqr}\Big)\,.$ Killing vector

Generalized Supergravity

If a target space is a solution of Generalized SUGRA, superstring theory has the kappa-invariance

[Tseytlin, Wulff 1605.04884]

and the rigid scale-invariance.

[Hull, Townsend '86; Arutyunov, Frolov, Hoare, Roiban, Tseytlin '15]

However, the Weyl invariance seems to be broken.

[Fernandez-Melgarejo, Sakamoto, YS, Yoshida 1811.10600]

Weyl invariance may not be broken!

talk by Kentaroh Yoshida

String theory may be consistently defined!

In this talk

I will explain that

YB-deformation/NATD are solution generating transformations of DFT

If time allows,

Plan

- **1. Review of DFT**
- 2. How to derive GSE from DFT? How to derive massive IIA SUGRA?

67 pages

3. Exceptional Field Theory (EFT) (*U*-duality) more deformed SUGRAs can be derived

1. Review of DFT

[Siegel '93; Hull, Zwiebach, 0904.4664; Hohm, Hull, Zwiebach, 1006.4823; I. Jeon, K. Lee, J.-H. Park, 1011.1324; …]

Several formulations of DFT

- Generalized metric formulation: toroidal DFT [Hohm, Hull, Zwiebach; I. Jeon, K. Lee, J.-H. Park; …]
- Flux formulation

[Geissbuhler, Marques, Nunez, Penas, 1304.1472]

- DFT on group manifold talk by Falk Hassler [Blumenhagen, Hassler, Lust, 1410.6374]
- DFT in supermanifold formulation

•

[Carow-Watamura, Ikeda, Kaneko, Watamura, 1812.03464]

talk by Noriaki Ikeda

T-duality

Suggested in [Duff '90; Tseytlin '91; Kugo, Zwiebach '92; Siegel '93; …]

Doubled space

Generalized coordinates:

$$\begin{array}{l} \textbf{d-dim.}\\ \swarrow\\ (x^M) = (x^m, \ \tilde{x}_m)\\ \uparrow\\ \textbf{2d-dim.} \qquad \textbf{d-dim.} \end{array}$$

On the doubled space, there is a natural metric, known as the generalized metric:

$$(\mathcal{H}_{MN}) = \begin{pmatrix} (g - B g^{-1} B)_{mn} & B_{mp} g^{pn} \\ -g^{mp} B_{pn} & g^{mn} \end{pmatrix}$$

Doubled space String theory / T^d $M^2 = \frac{2}{\alpha'} \left(z^M \mathcal{H}_{MN} z^N + N + \tilde{N} - 2 \right)$ $\left(z^M \right) \equiv \begin{pmatrix} w^m & \text{winding} \\ p_m & \text{momenta} \end{pmatrix}$

O(*d*,*d*) **T**-duality symmetry: $z^M \to (\Lambda^{-1})^M{}_N z^N, \qquad \mathcal{H}_{MN} \to (\Lambda^T \mathcal{H} \Lambda)_{MN}.$

O(*d*,*d*) metric

O(d,d) matrix is defined by

 $(\Lambda^{\mathrm{T}} \eta \Lambda)_{MN} = \eta_{MN}.$

Standard convention

We raise/lower the O(d,d) indices M, N, ... by using

$$\eta^{MN} = \begin{pmatrix} 0 & \delta_n^m \\ \delta_m^n & 0 \end{pmatrix} \quad \text{or} \quad \eta_{MN} = \begin{pmatrix} 0 & \delta_n^m \\ \delta_m^n & 0 \end{pmatrix}$$

$$x^M = (x^m, \tilde{x}_m) \qquad \qquad x_M \equiv \eta_{MN} \, x^N = (\tilde{x}_m, \, x^m)$$

$$\partial_M = (\partial_m, \tilde{\partial}^m) \qquad \qquad \partial^M \equiv \eta^{MN} \, \partial_N = (\tilde{\partial}^m, \, \partial_m)$$

Diffeomorphism

In the usual spacetime, diffeomorphisms are generated by the Lie derivative:

$$\pounds_v w_m = v^n \,\partial_n w_m + \partial_m v^n \,w_n \,.$$

The diffeomorphism-invariant gravitational theory is the Einstein gravity:

$$\mathcal{L}_{\mathrm{GR}} = \sqrt{-g} R$$
.

Generalized diffeomorphism

In the doubled space, diffeomorphisms are generated by the generalized Lie derivative:

Derivations

Hamiltonian formulation of string: [Siegel hep-th/9305073] Gauge symmetry of CSFT: [Hull, Zwiebach 0904.4664]

Double Field Theory

Double Field Theory is the generalized diffeomorphism-invariant theory.

DFT action

Lagrangian of DFT (NS-NS sector):

[Hohm, Hull, Zwiebach, 1006.4823]

$$\mathcal{L}_{\text{DFT}} \equiv e^{-2d} \left(\mathcal{H}^{MN} \partial_M \partial_N d - \partial_M \partial_N \mathcal{H}^{MN} - 4\mathcal{H}^{MN} \partial_M d \partial_N d + 4\partial_M \mathcal{H}^{MN} \partial_N d + \frac{1}{8} \mathcal{H}^{MN} \partial_M \mathcal{H}^{KL} \partial_N \mathcal{H}_{KL} - \frac{1}{2} \mathcal{H}^{MN} \partial_M \mathcal{H}^{KL} \partial_K \mathcal{H}_{NL} \right)$$
This combination is invariant

This combination is invariant under the generalized diffeomorphism.

Consistency condition

In fact, the generalized diffeo.-invariance of the action requires a condition, called the section condition.

$$\eta^{MN} \,\partial_M A \,\partial_N B = 0 \,.$$

This is also required for the closure of the generalized Lie derivative.

$$[\hat{\mathcal{L}}_{V_1}, \, \hat{\mathcal{L}}_{V_2}] W^M = \hat{\mathcal{L}}_{[V_1, \, V_2]_C} W^M$$

This is trivially satisfied if all fields are independent of the dual coordinates \tilde{x}_m .

$$\tilde{\partial}^m = 0$$

$$\eta^{MN} \partial_M A \partial_N B = \partial_m A \tilde{\partial}^m B + \tilde{\partial}^m A \partial_m B = 0$$

Section condition

Section condition always
removes the dependence on a half (x^m, \varkappa_n)
 $(\varkappa^n, \tilde{x}_m)$ of the doubled coordinates. (χ^n, \tilde{x}_m)

In fact, depending on the choice of the coordinates we can reproduce the SUGRA or GSE.

Conventional SUGRA $\partial_M = (\partial_m, \tilde{\partial}^m) = (\partial_m, \mathbf{0})$ *canonical section*

Parameterization

$$(\mathcal{H}_{MN}) = \begin{pmatrix} (g - B g^{-1} B)_{mn} & B_{mp} g^{pn} \\ -g^{mp} B_{pn} & g^{mn} \end{pmatrix}, \qquad e^{-2d} = e^{-2\Phi} \sqrt{|g|}.$$

Generalized diffeomorphism

$$\delta_{V}\mathcal{H}_{MN} = \hat{\pounds}_{V}\mathcal{H}_{MN} = V^{P} \partial_{P}\mathcal{H}_{MN} + (\partial_{M}V^{P} - \partial^{P}V_{M})\mathcal{H}_{PN} + (\partial_{N}V^{P} - \partial^{P}V_{N})\mathcal{H}_{MP}.$$

$$(\mathcal{H}_{MN}) = \begin{pmatrix} (g - B g^{-1} B)_{mn} & B_{mp} g^{pn} \\ -g^{mp} B_{pn} & g^{mn} \end{pmatrix}$$

$$V^{M} = (v^{m}, \tilde{v}_{m})$$

$$\begin{cases} \delta_{V}g_{mn} &= \pounds_{v}g_{mn} \\ \delta_{V}B_{mn} &= \pounds_{v}B_{mn} + (\partial_{m}\tilde{v}_{n} - \partial_{n}\tilde{v}_{m}). \end{cases}$$

Generalized diffeomorphism unifies the usual diffeo. and B-field gauge transformation.

Short Summary

Gravitational theory on the **doubled space**

$$(x^M) = (x^m, \, \tilde{x}_m)$$

Fundamental fields (NS-NS sector):

$$(\mathcal{H}_{MN}) = \begin{pmatrix} (g - B g^{-1} B)_{mn} & B_{mp} g^{pn} \\ -g^{mp} B_{pn} & g^{mn} \end{pmatrix}, \qquad e^{-2d} = e^{-2\Phi} \sqrt{|g|}.$$

$$\mathcal{L}_{\text{DFT}} \xrightarrow{\mathcal{L}} \mathcal{L} = \sqrt{|g|} e^{-2\Phi} \left(R + 4 |\partial \Phi|^2 - \frac{1}{12} |H_3|^2 \right).$$
$$\tilde{\partial}^m = 0$$

2*d* dim. generalized diffeo. = $\begin{bmatrix} d \text{ dim. diffeo.} \\ gauge sym. of B_2 \end{bmatrix}$

Side remark

differential geometry on the doubled space

[Siegel '93; I. Jeon, K. Lee, J-H. Park '10; Hohm, Zwiebach '12]

DFT action

Lagrangian of DFT (NS-NS sector):

$$\mathcal{L}_{\text{DFT}} \equiv e^{-2d} \left(\mathcal{H}^{MN} \partial_M \partial_N d - \partial_M \partial_N \mathcal{H}^{MN} - 4\mathcal{H}^{MN} \partial_M d \partial_N d + 4\partial_M \mathcal{H}^{MN} \partial_N d + \frac{1}{8} \mathcal{H}^{MN} \partial_M \mathcal{H}^{KL} \partial_N \mathcal{H}_{KL} - \frac{1}{2} \mathcal{H}^{MN} \partial_M \mathcal{H}^{KL} \partial_K \mathcal{H}_{NL} \right)$$

$$\parallel$$
"Einstein-Hilbert" action $e^{-2d} \mathcal{S}$

generalized Ricci scalar curvature

[Siegel '93; I. Jeon, K. Lee, J-H. Park '10; Hohm, Zwiebach '12]

Generalized Ricci tensor

Action
$$\mathcal{L}_{DFT} = e^{-2d} S$$
.E.O.M. $S_{MN} = 0$, $S = 0$.generalized
Ricci flatness
manifestly covariant under
generalized diffeomorphisms.E.O.M. $\tilde{\partial}^m = 0$ $R_{mn} - \frac{1}{4} H_{mkl} H_n^{kl} + 2D_m \partial_n \Phi = 0$,
 $-\frac{1}{2} D^k H_{kmn} + \partial_k \Phi H^k_{mn} = 0$,
 $R + 4 D^m \partial_m \Phi - 4 |\partial \Phi|^2 - \frac{1}{2} |H_3|^2 = 0$.

R-R fields/fermions

Ramond–Ramond sector 1/2

[Hohm, Kwak, Zwiebach, '11] $\{\gamma^M, \gamma^N\} = \eta^{MN}$ based on [Fukuma, Oota, Tanaka '99] $(\gamma^M) = (\gamma^m, \gamma_m) \implies \{\gamma^m, \gamma_n\} = \delta_n^m$ $(\underline{d}, \underline{d}) \text{ spinor} \qquad \text{creation annihilation} \qquad \gamma_m |0\rangle = 0$ $|A\rangle = \sum_p \frac{1}{p!} A_{m_1 \cdots m_p} \gamma^{m_1} \cdots \gamma^{m_p} |0\rangle = 0$ O(d,d) spinor $|F\rangle \equiv \partial |A\rangle \qquad (\partial \equiv \gamma^M \, \partial_M)$ $\mathcal{L}_{\mathrm{R-R}} = -\frac{1}{4} \langle F|\mathbb{S}|F\rangle \qquad \Longrightarrow \qquad \mathcal{L}_{\mathrm{R-R}} = -\frac{1}{4} \sum_{p} |F_{p}|^{2}$

Ramond–Ramond sector 1/2

matter

<u>E.O.M.</u> $\mathcal{S}_{MN} = \mathcal{E}_{MN}, \quad \mathcal{S} = 0, \quad \not \partial [C \, \mathbb{S} \, |F\rangle] = 0.$

$$\mathcal{E}_{MN} = \frac{1}{4} e^{2d} \Big[\langle F | (\gamma_{(M})^{\mathrm{T}} \mathbb{S} \gamma_{N)} | F \rangle - \frac{1}{2} \mathcal{H}_{MN} \langle F | \mathbb{S} | F \rangle \Big]$$

Energy-momentum tensor

O(d,d) transformation

$$|F\rangle \rightarrow \Omega |F\rangle$$
.
 $\Omega \gamma_M \Omega^{-1} = \gamma_N \Lambda^N M^N$.
Ramond–Ramond sector 2/2

Introduce double vielbein

[I. Jeon, K. Lee, J.-H. Park '12] based on [Hassan '01]

$$\mathcal{H}^{MN} = V^{M}{}_{A} V^{N}{}_{B} \mathcal{H}^{AB} .$$

$$\{A\} = \{a, \bar{a}\}$$

$$(V^{M}{}_{a}) = \frac{1}{\sqrt{2}} \begin{pmatrix} (e^{-T})^{m}{}_{a} \\ E_{mn} (e^{-T})^{n}{}_{a} \end{pmatrix}, \quad (\bar{V}^{M}{}_{\bar{a}}) = \frac{1}{\sqrt{2}} \begin{pmatrix} (\bar{e}^{-T})^{m}{}_{\bar{a}} \\ -E^{T}_{mn} (\bar{e}^{-T})^{n}{}_{\bar{a}} \end{pmatrix}$$

Local flat metric $\mathcal{H}_{AB} = \begin{pmatrix} \eta_{ab} & 0 \\ 0 & -\bar{\eta}^{\bar{a}\bar{b}} \end{pmatrix}, \quad \eta_{AB} = \begin{pmatrix} \eta_{ab} & 0 \\ 0 & \bar{\eta}^{\bar{a}\bar{b}} \end{pmatrix}.$

double Lorentz symmetry O(d) x O(d)

Ramond–Ramond sector 2/2

Local flat metric
$$\mathcal{H}_{AB} = \begin{pmatrix} \eta_{ab} & 0 \\ 0 & -\bar{\eta}^{\bar{a}\bar{b}} \end{pmatrix}, \quad \eta_{AB} = \begin{pmatrix} \eta_{ab} & 0 \\ 0 & \bar{\eta}^{\bar{a}\bar{b}} \end{pmatrix}$$

double Lorentz symmetry O(d) x O(d)

Ramond-Ramond fields (bi-spinor):

In this formulation, there are 2 vielbeins:

$$(\mathbf{V}^{M}{}_{a}) = \frac{1}{\sqrt{2}} \begin{pmatrix} (\mathbf{e}^{-\mathrm{T}})^{m}{}_{a} \\ E_{mn} (\mathbf{e}^{-\mathrm{T}})^{n}{}_{a} \end{pmatrix}, \qquad (\bar{\mathbf{V}}^{M}{}_{\bar{a}}) = \frac{1}{\sqrt{2}} \begin{pmatrix} (\bar{\mathbf{e}}^{-\mathrm{T}})^{m}{}_{\bar{a}} \\ -E_{mn}^{\mathrm{T}} (\bar{\mathbf{e}}^{-\mathrm{T}})^{n}{}_{\bar{a}} \end{pmatrix}$$

In order to reproduce the usual SUGRA,

we should make an identification: $\bar{e}_m{}^{\bar{a}} = e_m{}^a$.

Ramond–Ramond sector 2/2Under a general O(*d*,*d*) rotation $h^{M}{}_{N} = \begin{pmatrix} s^{m}{}_{n} & r^{mn} \\ g_{mn} & p_{m}{}^{n} \end{pmatrix}$ $V^{M}{}_{a} \to h^{M}{}_{N} V^{N}{}_{a}, \qquad \bar{V}^{M}{}_{\bar{a}} = h^{M}{}_{N} \bar{V}^{N}{}_{\bar{a}}.$ The two vielbeins transform differently: $e_m{}^a \to \left[\left(s^{\rm T} + E^{\rm T} r^{\rm T} \right)^{-1} \right]_m{}^n e_n{}^a, \qquad \bar{e}_m{}^{\bar{a}} \to \left[\left(s^{\rm T} - E r^{\rm T} \right)^{-1} \right]_m{}^n \bar{e}_n{}^{\bar{a}}.$ In order to keep the identification $\bar{e}_m{}^{\bar{a}} = e_m{}^a$. we should combine O(d, d) rotation and a Lorentz transf. $V_M{}^a \to h_M{}^N V_N{}^a$, $\bar{V}_M{}^{\bar{a}} \to h_M{}^N \bar{V}_N{}^b \Lambda^{\bar{a}}{}_{\bar{L}}$. $\Lambda = e^{T} (s + r E)^{-1} (s - r E^{T}) e^{-T}$ [Hassan '01; I. Jeon, K. Lee, J.-H. Park '12]

Ramond–Ramond sector 2/2Under a general O(*d*,*d*) rotation $h^{M}{}_{N} = \begin{pmatrix} s^{m}{}_{n} & r^{mn} \\ q_{mn} & p_{m}{}^{n} \end{pmatrix}$

only barred index is rotated by the Lorentz transf.

$$\mathcal{C}^{\alpha}{}_{\bar{\beta}} \to \mathcal{C}^{\alpha}{}_{\bar{\gamma}} \left(\Omega^{-1}\right)^{\bar{\gamma}}{}_{\bar{\beta}}$$
$$\Omega^{-1} \,\bar{\Gamma}^a \,\Omega = \Lambda^{\bar{a}}{}_{\bar{b}} \,\bar{\Gamma}^b \,.$$

The same idea has been applied in the context of the Non-Abelian T-duality.

[Sfetsos, Thompson, 1012.1320]

Field strength: $\mathcal{F}\equiv\mathcal{D}_+\mathcal{C}$

(covariant under generalized diffeo.)

 ${\cal L}_{
m R-R} \sim {\cal F}^{lphaareta} \, {\cal F}_{lphaareta}$. [I. Jeon, K. Lee, J.-H. Park '12]

Fermions

In type II SUGRA, we have

$$\begin{array}{ll} \mbox{gravitino:} & \psi_a^1 \,, \ \psi_a^2 \,, \ \psi_a^1 \,, \ \psi_a^2 \,, \ \psi_a^1 \,, \ \psi_a^1 \,, \ \psi_a^2 \,, \ \psi_a^1 \,, \ \psi_a^1 \,, \ \psi_a^2 \,, \ \psi_a^1 \,, \ \psi_a^1 \,, \ \psi_a^2 \,, \ \psi_a^1 \,, \ \psi_a^1 \,, \ \psi_a^2 \,, \ \psi_a^1 \,, \ \psi_a^1 \,, \ \psi_a^2 \,, \ \psi_a^1 \,, \ \psi_a^1 \,, \ \psi_a^2 \,, \ \psi_a^1 \,, \ \psi_a^1 \,, \ \psi_a^2 \,, \ \psi_a^1 \,, \ \psi_a^1 \,, \ \psi_a^2 \,, \ \psi_a^1 \,, \ \psi_a^1 \,, \ \psi_a^2 \,, \ \psi_a^1 \,, \ \psi_a^1 \,, \ \psi_a^2 \,, \ \psi_a^1 \,, \ \psi_a^1 \,, \ \psi_a^2 \,, \ \psi_a^1 \,, \ \psi_a^1 \,, \ \psi_a^2 \,, \ \psi_a^1 \,, \ \psi_a^1 \,, \ \psi_a^2 \,, \ \psi_a^1 \,, \ \psi_a^1 \,, \ \psi_a^1 \,, \ \psi_a^2 \,, \ \psi_a^1 \,, \ \psi_a^1 \,, \ \psi_a^1 \,, \ \psi_a^2 \,, \ \psi_a^1 \,, \ \psi_a^1 \,, \ \psi_a^1 \,, \ \psi_a^2 \,, \ \psi_a^1 \,, \ \psi_a^1$$

Type II DFT action. [I. Jeon, K. Lee, J.-H. Park , Y. Suh '12] c.f. [Coimbra, Strickland-Constable, Waldram '11]

2. GSE from DFT

Neglecting the R-R fields, GSE take the form:

$$\begin{cases} R - \frac{1}{2} |H_3|^2 - 4 D_m X^m - 4 X^m X_m = 0. \\ R_{mn} - \frac{1}{4} H_{mpq} H_n^{pq} + D_m X_n + D_n X_m = 0, \\ -\frac{1}{2} D^k H_{kmn} + X^k H_{kmn} + D_m X_n - D_n X_m = 0. \\ X_m \equiv \partial_m \Phi + (g_{mn} - B_{mn}) I^n. \end{cases}$$
non-dynamical vector

Constraint :

 $\pounds_I g_{mn} = 0, \qquad \pounds_I B_{mn} = 0, \qquad \pounds_I \Phi = 0.$

I should be a Killing vector of a GSE solution.

Example of GSE solution

Solutions of GSE

Example from NATD

[Gasperini, Ricci, Veneziano hep-th/9308112]

Original Background (Type V Bianchi universe):

$$ds^{2} = -dt^{2} + t^{2} [dx^{2} + e^{2x} (dy^{2} + dz^{2})].$$

We consider 3 Killing vectors,

$$v_1 = \partial_x - y \,\partial_y - z \,\partial_z \,, \quad v_2 = \partial_y \,, \quad v_3 = \partial_z \,.$$

$$\begin{bmatrix} v_1, v_2 \end{bmatrix} = v_2, \quad \begin{bmatrix} v_1, v_3 \end{bmatrix} = v_3, \quad \begin{bmatrix} v_2, v_3 \end{bmatrix} = 0.$$
$$f_{12}{}^2 = 1, \quad f_{13}{}^3 = 1 \quad \Rightarrow \quad f_{1i}{}^i = 2.$$
$$tracefull!$$

Dual geometry

[Gasperini, Ricci, Veneziano hep-th/9308112]

 $\begin{pmatrix}
-1 & 0 & 0 & 0 \\
0 & \frac{t^2}{t^4 + y^2 + z^2} & 0 & 0 \\
0 & 0 & \frac{t^4 + z^2}{t^2 (t^4 + y^2 + z^2)} & -\frac{yz}{t^2 (t^4 + y^2 + z^2)} \\
0 & 0 & -\frac{yz}{t^2 (t^4 + y^2 + z^2)} & \frac{t^4 + y^2}{t^2 (t^4 + y^2 + z^2)}
\end{pmatrix},$ $e^{-2\Phi} = t^2 \left(t^4 + y^2 + z^2\right).$ $f(de \ la \ Ossa, \ Quevedo \ '92]$ $\Phi' = \Phi - \frac{1}{2} \ln \det M_{ij}$ $\left(M_{ij} \equiv E_{ij}^0 + f_{ij}{}^k x_k\right)$

This background does not satisfy the SUGRA e.o.m.

"A Problem with Non-Abelian Duality?"

[Gasperini, Ricci, Veneziano hep-th/9308112]

GSE solution

[Fernandez-Melgarejo, Sakamoto, YS, Yoshida, 1710.06849]

 $g_{mn} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & \frac{t^2}{t^4 + y^2 + z^2} & 0 & 0 \\ 0 & 0 & \frac{t^4 + z^2}{t^2 \left(t^4 + y^2 + z^2\right)} & -\frac{yz}{t^2 \left(t^4 + y^2 + z^2\right)} \\ 0 & 0 & -\frac{yz}{t^2 \left(t^4 + y^2 + z^2\right)} & \frac{t^4 + y^2}{t^2 \left(t^4 + y^2 + z^2\right)} \end{pmatrix},$ $e^{-2\Phi} = t^2 (t^4 + y^2 + z^2), \qquad I = I^m \partial_m = 2 \partial_x.$

Solution of Generalized Supergravity!

GSE solutions

More GSE solutions were obtained from Non-Abelian *T*-dualities of other Bianchi universes.

[Hong, Kim, Ó Colgáin, 1801.09567]

General formula:

The Killing vector is given by

Generalized SUGRA from DFT

[YS, Uehara, Yoshida, 1611.05856]

[Sakamoto, YS, Yoshida, 1703.09213]

Without the R-R fields, **GSE** have the form:

$$\begin{cases} R - \frac{1}{2} |H_3|^2 - 4 D_m X^m - 4 X^m X_m = 0 \, . \\ R_{mn} - \frac{1}{4} H_{mpq} H_n{}^{pq} + D_m X_n + D_n X_m = 0 \, . \\ - \frac{1}{2} D^k H_{kmn} + X^k H_{kmn} + D_m X_n - D_n X_m = 0 \, . \\ X_m \equiv \partial_m \Phi + (g_{mn} - B_{mn}) I^n \, . \\ & \downarrow \\ \pounds_I g_{mn} = 0 \, . \quad \pounds_I B_{mn} = 0 \, . \quad \pounds_I \Phi = 0 \, . \end{cases}$$

Due to the Killing property,

$$\pounds_{I}g_{mn} = 0, \quad \pounds_{I}B_{mn} = 0, \quad \pounds_{I}\Phi = 0.$$

we can always take an adapted coordinates where I^m is constant.

$$\implies \quad \pounds_I = I^m \,\partial_m \,.$$

Killing equations become

$$I^m \partial_m \mathcal{H}_{MN} = 0, \qquad I^m \partial_m d = 0.$$

Now, we can derive **GSE** by introducing a linear dual-coordinate dependence into the DFT dilaton:

Section condition is not violated: $\eta^{MN} \partial_M d \partial_N d = 2 I^m \partial_m \bar{d} = 0.$ $\eta^{MN} \partial_M d \partial_N \mathcal{H}_{MN} = I^m \partial_m \mathcal{H}_{MN} = 0.$

GSE from DFT

According to the ansatz,

$$d = \bar{d}(x^i) + \boldsymbol{I^m}\,\tilde{\boldsymbol{x}_m}\,,$$

derivative of dilaton becomes

By substituting the ansatz [YS, Uehara, Yoshida, 1611.05856] $\mathcal{H}_{MN} = \mathcal{H}_{MN}(x^i), \quad d = \bar{d}(x^i) + I^m \tilde{x}_m,$

into e.o.m. of DFT, we can reproduce the GSE !

$$S = R - \frac{1}{2} |H_3|^2 - 4 D_m X^m - 4 X^m X_m = 0.$$

$$\begin{bmatrix} X_m \equiv \partial_m \Phi + (g_{mn} - B_{mn}) I^n \end{bmatrix}$$

$$S_{MN} = \begin{pmatrix} 2 g_{(m|k} \hat{s}^{[kl]} B_{l|n)} - \hat{s}_{(mn)} - B_{mk} \hat{s}^{(kl)} B_{ln} & B_{mk} \hat{s}^{(kn)} - g_{mk} \hat{s}^{[kn]} \\ \hat{s}^{[mk]} g_{kn} - \hat{s}^{(mk)} B_{km} & \hat{s}^{(mn)} \end{pmatrix} = 0.$$

$$\hat{s}_{(mn)} = R_{mn} - \frac{1}{4} H_{mpq} H_n^{pq} + D_m X_n + D_n X_m = 0,$$

$$\hat{s}_{[mn]} = -\frac{1}{2} D^k H_{kmn} + X^k H_{kmn} + D_m X_n - D_n X_m = 0.$$

Ramond-Ramond sector

[Sakamoto, YS, Yoshida, 1703.09213]

We make an ansatz

$$\mathcal{H}_{MN} = \mathcal{H}_{MN}(x^{i}), \qquad d = \bar{d}(x^{i}) + I^{m} \tilde{x}_{m},$$

$$A = e^{\bar{\Phi}(x^{i}) + I^{m} \tilde{x}_{m}} \mathcal{A}(x^{i}),$$

$$F = e^{\bar{\Phi}(x^{i}) + I^{m} \tilde{x}_{m}} \mathcal{F}(x^{i}).$$

$$I^{m} \partial_{m} \mathcal{F}(x^{i}) = 0.$$

$$\mathcal{S}_{MN} = \mathcal{E}_{MN}, \quad \mathcal{S} = 0, \quad \not \partial [C \, \mathbb{S} \, |F\rangle] = 0.$$

Ramond-Ramond sector

[Sakamoto, YS, Yoshida, 1703.09213] Type IIA/IIB GSE:

$$\begin{aligned} R_{mn} &- \frac{1}{4} H_{mkl} H_n{}^{kl} + D_m \boldsymbol{X}_n + D_n \boldsymbol{X}_m = T_{mn} ,\\ &- \frac{1}{2} D^k H_{kmn} + \partial_k \Phi H^k{}_{mn} = \mathcal{K}_{mn} ,\\ R &- \frac{1}{2} |H_3|^2 + 4 D_m \boldsymbol{X}^m - 4 \boldsymbol{X}_m \boldsymbol{X}^m = 0 ,\\ d\hat{\mathcal{F}}_p &+ H_3 \wedge \hat{\mathcal{F}}_{p-2} - \boldsymbol{Z} \wedge \hat{\mathcal{F}}_p - \iota_I \hat{\mathcal{F}}_{p+2} = 0 .\\ &\left(\boldsymbol{Z}_m \equiv \partial_m \Phi - B_{mn} I^n\right) \end{aligned}$$

$$T_{mn} \equiv \frac{1}{4} \sum_{p} \left[\frac{1}{(p-1)!} \hat{\mathcal{F}}_{(m}^{k_1 \cdots k_{p-1}} \hat{\mathcal{F}}_{n)k_1 \cdots k_{p-1}} - \frac{1}{2} g_{mn} |\hat{\mathcal{F}}_p|^2 \right],$$
$$\mathcal{K}_{mn} \equiv \frac{1}{4} \sum_{p} \frac{1}{(p-2)!} \hat{\mathcal{F}}_{k_1 \cdots k_{p-2}} \hat{\mathcal{F}}_{mn}^{k_1 \cdots k_{p-2}}.$$

Ramond-Ramond sector

[Arutyunov-Frolov-Hoare-Roiban-Tseytlin '15; Sakamoto, YS, Yoshida, 1703.09213]

We have also determined the *T*-duality rule in the presence of the Killing vector:

$$\begin{split} g'_{ij} &= g_{ij} - \frac{g_{iz} \, g_{jz} - B_{iz} \, B_{jz}}{g_{zz}} \,, \qquad g'_{iz} = \frac{B_{iz}}{g_{zz}} \,, \qquad g'_{zz} = \frac{1}{g_{zz}} \,, \\ B'_{ij} &= B_{ij} - \frac{B_{iz} \, g_{jz} - g_{iz} \, B_{jz}}{g_{zz}} \,, \qquad B'_{iz} = \frac{g_{iz}}{g_{zz}} \,, \\ \Phi' &= \Phi + \frac{1}{4} \ln \left| \frac{\det g'_{mn}}{\det g_{mn}} \right| + I^{z}z \,, \qquad I'^{i} = I^{i} \,, \qquad I'^{z} = 0 \,, \\ C'_{i_{1} \cdots i_{p-1}z} &= e^{-I^{z} \, z} \left[C_{i_{1} \cdots i_{p-1}} - (p-1) \, \frac{C_{[i_{1} \cdots i_{p-2}|z|} \, g_{i_{p-1}]z}}{g_{zz}} \right] \,, \\ C'_{i_{1} \cdots i_{p}} &= e^{-I^{z} \, z} \left[C_{i_{1} \cdots i_{p-1}} + p \, C_{[i_{1} \cdots i_{p-1}} \, B_{i_{p}]z} + p \, (p-1) \, \frac{C_{[i_{1} \cdots i_{p-2}|z|} \, B_{i_{p-1}|z|} \, g_{i_{p}]z}}{g_{zz}} \right] \,. \end{split}$$

Summary

Choice of the section is different.

Comment

$$\mathcal{L}_{\rm DFT} \equiv e^{-2d} \left(\mathcal{H}^{MN} \,\partial_M \partial_N d - \partial_M \partial_N \mathcal{H}^{MN} - 4 \mathcal{H}^{MN} \,\partial_M d \,\partial_N d \right. \\ \left. + 4 \partial_M \mathcal{H}^{MN} \,\partial_N d + \frac{1}{8} \,\mathcal{H}^{MN} \,\partial_M \mathcal{H}^{KL} \,\partial_N \mathcal{H}_{KL} - \frac{1}{2} \,\mathcal{H}^{MN} \,\partial_M \mathcal{H}^{KL} \,\partial_K \mathcal{H}_{NL} \right)$$

DFT action is invariant under a **constant** O(*d*,*d*) rotation

$$\mathcal{H}_{MN} \to (\Lambda^{-\mathrm{T}})_M{}^K (\Lambda^{-\mathrm{T}})_N{}^L \mathcal{H}_{KL},$$
$$x^M \to \Lambda^M{}_N x^N, \qquad \partial_M d \to (\Lambda^{-\mathrm{T}})_M{}^N \partial_N d.$$

Unlike the Abelian T-duality of string theory, this is a symmetry even without isometries.

"formal T-duality"

GSE solution

Arbitrary solution of GSE,

$$\mathcal{H}_{MN} = \mathcal{H}_{MN}(x^i), \qquad \quad d(x) = \bar{d}(x^i) + I^z \,\tilde{z}$$

Perform a formal T-duality along the z-direction

$$\mathcal{H}'_{MN} = \mathcal{H}'_{MN}(x^i), \qquad d(x) = \bar{d}(x^i) + I^z z$$
Buscher rule
$$\tilde{\partial}^m = 0 \quad \text{Solution of SUGRA}$$

A solution of GSE can be mapped to a solution of SUGRA

[Hoare, Tseytlin, 1508.01150; Arutyunov-Frolov-Hoare-Roiban-Tseytlin '15; YS, Uehara, Yoshida, 1611.05856]

 $z\leftrightarrow \tilde{z}$

GSE solution

Conversely, for an arbitrary linear-dilaton solution

 $\mathcal{H}_{MN} = \mathcal{H}_{MN}(x^{i}), \qquad d(x) = \bar{d}(x^{i}) + I^{z} z.$ a formal T-duality $\mathcal{H}'_{MN} = \mathcal{H}'_{MN}(x^{i}), \qquad d(x) = \bar{d}(x^{i}) + I^{z} \tilde{z}.$ GSE solution

GSE solution is just a SUGRA solution described in a non-canoical section.

D8-brane solution

$$ds^{2} = H^{-1/2}(x^{9}) dx_{01\cdots 8}^{2} + H^{1/2}(x^{9}) dx_{9}^{2},$$

$$e^{-2\Phi} = H^{5/2}(x^{9}), \quad H(x) \equiv h_{0} + m |x|.$$

[Bergshoeff, de Roo, Green, Papadopoulos, Townsend, '96]

D8-brane solution in DFT

$$ds^{2} = H^{-1/2}(x^{9}) dx_{01\dots8}^{2} + H^{1/2}(x^{9}) dx_{9}^{2},$$

$$A_{1} = m \tilde{x}_{8} dx^{8}, \quad e^{-2\Phi} = H^{5/2}(x^{9}).$$
D7-brane solution

$$\int \text{formal T-duality} \quad \tilde{x}_{8} \leftrightarrow x^{8}$$

$$ds^{2} = H^{-1/2}(x^{9}) dx_{01\dots7}^{2} + H^{1/2}(x^{9}) (dx_{8}^{2} + dx_{9}^{2}),$$

$$A_{0} = m x^{8}, \quad e^{-2\Phi} = H^{2}(x^{9}).$$

Summary

3. Exceptional Field Theory (EFT)

U-dual version of DFT

[West '00; Berman, Perry '11; Berman, Godazgar, Perry, West '12; Hohm, Samtleben '13; ...]

In DFT

We introduced the doubled space.

In type II theory

There are more branes, which are connected by *U*-dualities.

How many branes?

It depends on the dimension of the compactification torus

Example : type IIB on T^3

P(1), P(2), P(3) F1(1), F1(2), F1(3) D1(1), D1(2), D1(3) D3(123)

10 branes are related by *U*-duality

D5/NS5 cannot wrap on T^3

How many branes?

It depends on the dimension of the compactification torus

Type IIB theory / T^6 or T^7

(D7, NS7, ******7)

Exceptional space

Generalized metric

$$(\mathcal{H}_{MN}) = \begin{pmatrix} (g - B g^{-1} B)_{mn} & B_{mp} g^{pn} \\ -g^{mp} B_{pn} & g^{mn} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & B \\ 0 & \mathbf{1} \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g^{-1} \end{pmatrix} \begin{pmatrix} \mathbf{1} & 0 \\ -B & \mathbf{1} \end{pmatrix}$$
$$(B_2, C_2) \quad (B_6, C_6)$$
$$\mathcal{M}_{MN} = (\cdots L_6^{\mathrm{T}} L_4^{\mathrm{T}} L_2^{\mathrm{T}} L_0^{\mathrm{T}} \hat{\mathcal{M}} L_0 L_2 L_4 L_6 \cdots)_{MN}$$
$$(\Phi, C_0) \quad C_4$$

Einstein-frame metric

EFT action

 $\begin{array}{l} \left[\text{Hohm, Samtleben '13; \cdots} \right] \\ \mathcal{L}_{\text{EFT}} = \mathcal{L}_{\text{EH}} + \mathcal{L}_{\text{scalar}} + \mathcal{L}_{\text{pot}} + \cdots, \\ \\ \mathcal{L}_{\text{EH}} = eR, \\ \mathcal{L}_{\text{scalar}} = \frac{e}{4\alpha_n} g^{\mu\nu} \partial_\mu \mathcal{M}_{MN} \partial_\nu \mathcal{M}^{MN}, \\ \\ \mathcal{L}_{\text{pot}} = \frac{e}{4\alpha_n} \mathcal{M}^{MN} \partial_M \mathcal{M}^{PQ} \partial_N \mathcal{M}_{PQ} - \frac{e}{2} \mathcal{M}^{MN} \partial_N \mathcal{M}^{PQ} \partial_Q \mathcal{M}_{MP} + e \partial_M \ln e \partial_N \mathcal{M}^{MN} \\ \\ + e \mathcal{M}^{MN} \partial_M \ln e \partial_N \ln e + \frac{e}{4} \mathcal{M}^{MN} \partial_M g^{\mu\nu} \partial_N g_{\mu\nu}. \end{array}$

Type IIB SUGRA action

Section condition in EFT

E_{*n*} **EFT**
$$\eta^{MN; \mathbf{I}} \partial_M \partial_N = 0, \qquad \Omega^{MN} \partial_M \partial_N = 0.$$

EFT action

[Hohm, Samtleben '13;] $\mathcal{L}_{\text{EFT}} = \mathcal{L}_{\text{EH}} + \mathcal{L}_{\text{scalar}} + \mathcal{L}_{\text{pot}} + \cdots,$ $e \equiv \sqrt{-\det g_{\mu\nu}}$ $g_{\mu\nu} \equiv |\det g_{ij}|^{\frac{1}{d-2}} g_{\mu\nu}$ $\mathcal{L}_{\mathrm{EH}} = eR$, $\mathcal{L}_{\text{scalar}} = \frac{e}{4\alpha_n} \, g^{\mu\nu} \, \partial_\mu \mathcal{M}_{MN} \, \partial_\nu \mathcal{M}^{MN} \,,$ $\mathcal{L}_{\text{pot}} = \frac{e}{4\alpha} \mathcal{M}^{MN} \partial_M \mathcal{M}^{PQ} \partial_N \mathcal{M}_{PQ} - \frac{e}{2} \mathcal{M}^{MN} \partial_N \mathcal{M}^{PQ} \partial_Q \mathcal{M}_{MP} + e \partial_M \ln e \partial_N \mathcal{M}^{MN}$ $+ e \mathcal{M}^{MN} \partial_M \ln e \partial_N \ln e + \frac{e}{4} \mathcal{M}^{MN} \partial_M g^{\mu\nu} \partial_N g_{\mu\nu}.$ A_3 11D SUGRA action $\mathcal{M}_{MN} = (\cdots L_6^{\mathrm{T}} L_2^{\mathrm{T}} \hat{\mathcal{M}} L_3 L_6 \cdots)_{MN}$

Type II theory, many branes are connected by T-/S-dualities

Type IIB branes

Type IIB / T⁷

[Kimura, Fernandez-Melgarejo, YS '18]

 $\left[\mathrm{F1}, \mathrm{P}, \mathrm{D1}, \mathrm{D3}, \mathrm{D5}, \mathrm{D7}, \mathrm{D9}, \mathrm{NS5}, \mathrm{KKM} \right], 5_2^2, 5_2^3, 5_2^4, 7_3, 5_3^2, 3_3^4, 1_3^6,$ $6_3^{(1,1)}, 4_3^{(1,3)}, 2_3^{(1,5)}, 7_3^{(2,0)}, 5_3^{(2,2)}, 3_3^{(2,4)}, 1_4^6, 0_4^{(1,6)}, 1_4^{(1,0,6)}, 5_4^3, 4_4^{(1,3)}, 3_4^{(2,3)}$ $2_4^{(3,3)}, 1_4^{(4,3)}, 5_4^{(1,0,3)}, 4_4^{(1,1,3)}, 3_4^{(1,2,3)}, 2_4^{(1,3,3)}, 9_4, 7_4^{(2,0)}, 5_4^{(4,0)}, 3_4^{(6,0)}$ $2_5^{(1,5)}, 2_5^{(3,3)}, 2_5^{(5,1)}, 1_5^{(1,0,6)}, 1_5^{(1,2,4)}, 1_5^{(1,4,2)}, 1_5^{(1,6,0)}, 2_5^{(1,0,0,6)}, 2_5^{(1,0,2,4)}$ $2_5^{(1,0,4,2)}, 2_5^{(1,0,6,0)}, 5_5^4, 5_5^{(2,2)}, 5_5^{(4,0)}, 4_5^{(1,1,3)}, 4_5^{(1,3,1)}, 3_5^{(2,0,4)}, 3_5^{(2,2,2)}, 3_5^{(2,4,0)}, 5_5^{(2,4,0)}, 5_5^{(2,2,2)$ $2_5^{(3,1,3)}, 2_5^{(3,3,1)}, 1_6^{(4,3)}, 1_6^{(1,4,2)}, 1_6^{(2,4,1)}, 1_6^{(3,4,0)}, 3_6^{(2,4)}, 3_6^{(1,2,3)}, 3_6^{(2,2,2)}$ $3_6^{(3,2,1)}, 3_6^{(4,2,0)}, 2_6^{(1,0,2,4)}, 2_6^{(1,1,2,3)}, 2_6^{(1,2,2,2)}, 2_6^{(1,3,2,1)}, 2_6^{(1,4,2,0)}, 1_7^{(1,6,0)}$ $1_{7}^{(3,4,0)}, 1_{7}^{(5,2,0)}, 1_{7}^{(7,0,0)}, 3_{7}^{(6,0)}, 3_{7}^{(2,4,0)}, 3_{7}^{(4,2,0)}, 3_{7}^{(6,0,0)}, 2_{7}^{(1,0,1,5,0)}, 2_{7}^{(1,0,3,3,0)}$ $2_7^{(1,0,5,1,0)}, 2_7^{(1,3,3)}, 2_7^{(3,1,3)}, 2_7^{(1,0,4,2)}, 2_7^{(1,2,2,2)}, 2_7^{(1,4,0,2)}, 2_7^{(2,1,3,1)}, 2_7^{(2,3,1,1)}$ $2_7^{(3,0,4,0)}, 2_7^{(3,2,2,0)}, 2_7^{(3,4,0,0)}, 1_8^{(7,0,0)}, 2_8^{(1,0,6,0)}, 2_8^{(3,0,4,0)}, 2_8^{(5,0,2,0)}, 2_8^{(7,0,0,0)}$ $2_8^{(3,3,1)}, 2_8^{(1,3,2,1)}, 2_8^{(2,3,1,1)}, 2_8^{(3,3,0,1)}, 2_8^{(1,0,3,3,0)}, 2_8^{(1,1,3,2,0)}, 2_8^{(1,2,3,1,0)}, 2_8^{(1,3,3,0,0)}, \\$ $2_9^{(1,4,2,0)}, 2_9^{(3,2,2,0)}, 2_9^{(5,0,2,0)}, 2_9^{(1,0,5,1,0)}, 2_9^{(1,2,3,1,0)}, 2_9^{(1,4,1,1,0)}, 2_9^{(2,1,4,0,0)},$ $2_{9}^{(2,3,2,0,0)}, 2_{9}^{(2,5,0,0,0)}, 2_{10}^{(3,4,0,0)}, 2_{10}^{(1,3,3,0,0)}, 2_{10}^{(2,3,2,0,0)}, 2_{10}^{(3,3,1,0,0)}, 2_{10}^{(4,3,0,0,0)},$ $2_{11}^{(7,0,0,0)}, 2_{11}^{(2,5,0,0,0)}, 2_{11}^{(4,3,0,0,0)}, 2_{11}^{(6,1,0,0,0)}$.

defect branes, domain-wall branes, space-filling branes

Domain-walls

In [Kimura, Fernandez-Melgarejo, YS '18]

all of the domain-wall brane backgrounds

were constructed as solutions of EFT.

They have a linear dual-coordinate dependence.

solution of a certain deformed SUGRA.

much like D8-brane solution

 $\begin{array}{l} {\rm F1, P, D1, D3, D5, D7, D9, NS5, KKM, 5_2^2, 5_2^3, 5_2^4, 7_3, 5_3^2, 3_3^4, 1_3^6,} \\ {\rm 6_3^{(1,1)}, 4_3^{(1,3)}, 2_3^{(1,5)}, 7_3^{(2,0)}, 5_3^{(2,2)}, 3_3^{(2,4)}, 1_6^4, 0_4^{(1,6)}, 1_4^{(1,0,6)}, 5_4^3, 4_4^{(1,3)}, 3_4^{(2,3)}, \\ {\rm 2_4^{(3,3)}, 1_4^{(4,3)}, 5_4^{(1,0,3)}, 4_4^{(1,1,3)}, 3_4^{(1,2,3)}, 2_4^{(1,3,3)}, 9_4, 7_4^{(2,0)}, 5_4^{(4,0)}, 3_4^{(6,0)}, \\ {\rm 2_5^{(1,5)}, 2_5^{(3,3)}, 2_5^{(5,1)}, 1_5^{(1,0,6)}, 1_5^{(1,2,4)}, 1_5^{(1,4,2)}, 1_5^{(1,6,0)}, 2_5^{(1,0,0,6)}, 2_5^{(1,0,2,4)}, \\ {\rm 2_5^{(1,0,4,2)}, 2_5^{(1,0,6,0)}, 5_4^4, 5_5^{(2,2)}, 5_5^{(4,0)}, 4_5^{(1,1,3)}, 4_5^{(1,3,1)}, 3_5^{(2,0,4)}, 3_5^{(2,2,2)}, 3_5^{(2,4,0)}, \\ {\rm 2_5^{(3,1,3)}, 2_5^{(3,3,1)}, 1_6^{(4,3)}, 1_6^{(1,4,2)}, 1_6^{(2,4,1)}, 1_6^{(3,4,0)}, 3_6^{(2,4)}, 3_6^{(1,2,3)}, 3_6^{(2,2,2)}, \\ {\rm 3_6^{(3,2,1)}, 3_6^{(4,2,0)}, 2_6^{(1,0,2,4)}, 2_6^{(1,1,2,3)}, 2_6^{(1,2,2,2)}, 2_6^{(1,3,2,1)}, 2_6^{(1,4,2,0)}, 1_7^{(1,6,0)}, \\ {\rm 1_7^{(3,4,0)}, 1_7^{(5,2,0)}, 1_7^{(7,0,0)}, 3_7^{(6,0)}, 3_7^{(2,4,0)}, 3_7^{(2,4,0)}, 3_7^{(4,2,0)}, 3_7^{(6,0,0)}, \ldots \end{array}$

Example

$$\mathcal{M}_{MN} = [L^{\mathrm{T}}(y_{345}) \,\hat{\mathcal{M}}(x^{0}, x^{1}, x^{2}, x^{3}, x^{4}, x^{5}, x^{6}, \cdots, x^{9}) \, L(y_{345})]_{MN}$$
$$\mathcal{L}_{\mathrm{EFT}}$$

We can (in principle) obtain the action of a deformed SUGRA.

Domain-walls

Similarly, we can obtain deformed SUGRAs for all of the domain-wall branes.

F1, P, D1, D3, D5, D7, D9, NS5, KKM, 5_{2}^{2} , 5_{2}^{3} , 5_{2}^{4} , 7_{3} , 5_{3}^{2} , 3_{3}^{4} , 1_{3}^{6} , $6_{3}^{(1,1)}$, $4_{3}^{(1,3)}$, $2_{3}^{(1,5)}$, $7_{3}^{(2,0)}$, $5_{3}^{(2,2)}$, $3_{3}^{(2,4)}$, 1_{4}^{6} , $0_{4}^{(1,6)}$, $1_{4}^{(1,0,6)}$, 5_{4}^{3} , $4_{4}^{(1,3)}$, $3_{4}^{(2,3)}$, $2_{4}^{(3,3)}$, $1_{4}^{(4,3)}$, $5_{4}^{(1,0,3)}$, $4_{4}^{(1,1,3)}$, $3_{4}^{(1,2,3)}$, $2_{4}^{(1,3,3)}$, 9_{4} , $7_{4}^{(2,0)}$, $5_{4}^{(4,0)}$, $3_{4}^{(6,0)}$, $2_{5}^{(1,0,4)}$, $2_{5}^{(1,0,6)}$, 5_{5}^{4} , $5_{5}^{(2,2)}$, $5_{5}^{(4,0)}$, $4_{5}^{(1,1,3)}$, $4_{5}^{(1,3,1)}$, $3_{5}^{(2,0,4)}$, $3_{5}^{(2,2,2)}$, $3_{5}^{(2,4,0)}$, $2_{5}^{(3,1,3)}$, $2_{5}^{(3,3,1)}$, $1_{6}^{(4,3)}$, $1_{6}^{(1,4,2)}$, $1_{6}^{(2,4,1)}$, $1_{6}^{(3,4,0)}$, $3_{6}^{(2,4)}$, $3_{6}^{(1,2,3)}$, $3_{6}^{(2,2,2)}$, $3_{5}^{(2,2,2)}$, $5_{5}^{(1,0,2,4)}$, $2_{6}^{(1,2,2,2)}$, $2_{6}^{(1,3,2,1)}$, $2_{6}^{(1,4,2,0)}$, $1_{7}^{(1,6,0)}$, $1_{7}^{(1,6,0)}$, $3_{7}^{(2,0)}$, $3_{7}^{(4,2,0)}$, $3_{7}^{(6,0,0)}$, $3_{7}^{(4,2,0)}$, $3_{7}^{(6,0,0)}$, ...

Summary

YB-deformation/NATD can generate solutions of GSE or massive IIA SUGRA.

Deformed SUGRAs can be derived from DFT by taking non-canonical sections.

By considering EFT,

we can consider more non-canonical sections, and various deformed SUGRAs can be derived.