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Introduction

B YB deformation kimcik 2002,2008]

» A systematic way that describes integrable deformations
of 2d non-linear sigma models.

» A deformation is characterized by specifying an r-matrix.
(a solution of the (m)CYBE )

> Application to the AdSs x S° superstring
[Delduc-Magro-Vicedo, 1309.5850] [Kawaguchi-Matsumoto-Yoshida,1401.4855]

Q. What is the physical meaning of the deformations?

YB deformations based on the CYBE = String duality transf.

[ Matsumoto-Yoshida, 1404.1838,1404.3657, 1502.00740 ] [Orlando-Reffert-J.S.-Yoshida, 1607.00795]

[ Hoare-Tseytlin, 1609.02550 ][ Borsato-Wulff, 1609.09834, 1706.10169 ]
[ J.S.-Sakatani-Yoshida, 1703.09213, 1705.07116 ] €tC.



Introduction

B Relations to string duality transformations

> The fi b . [ Matsumoto-Yoshida, 1404.1838,1404.3657,1502.00740]
e Tirst observation [ Osten-Tongeren, 1608.08504 ]

[ A class of YB deformations = TsT transformations ]

e.g. gravity dual of NCSYM, Lunin-Maldacena background

[Hashimoto-Itzhaki, Maldacena-Russo, 1999] [ Lunin-Maldacena, 2005 ]

> General case

[YB deformations = (a class of) Non-Abelian T-dualities ]

Conjecture: [ Hoare-Tseytlin, 1609.02550 ]
Proof: [ Borsato-Wulff, 1609.09834, 1706.10169 ]



Introduction

. . [ J.S.-Sakatani-Yoshida, 1703.09213, 1705.07116 ]
> Another reformulation in terms of DFT [ J.S.-Sakatani, 1803.05903]

YB deformations are equal to (local) B-transformations

sy

The transf. is generated by ¢ = ( 0 sn

) € 0(10,10)

e.g. Constant g : TsT transformations

» Some of YB deformed b.g. have non-geometric Q-fluxes.

YB deformed backgrounds may be regarded as T-folds.

[Fernandez-Melgarejo-J.S.-Sakatani-Yoshida, 1710.06849]
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1. YB deformations of
the AdS: x S° superstring



The AdS: x S° superstring

The AdS: x S° superstring can be described by using the supercoset

PSU(2,2[4)
SO(1,4) x SO(5)

B GS action of the AdSs x S° sueperstring ivetsaev-Tseytlin, 9805028 ]
1 2 a3 a3 —1 —1
S = 7 d*o (v — €*P)Str [¢7 " 0ag d(g~ ' 0p9)]

g=g(X,0) € SU(2,2/4) d= P +2P,— P;

P; (¢ =0,1,2,3) : projections to the Z4-grading components of su(2,2|4)

m) existence of a Lax pair (classically integrable)
[Bena-Polchinski-Roiban, hep-th/0305116]



YB deformations of the AdS: x S° superstring

B The action of the YB sigma model for AdS: x S°
[Delduc-Magro-Vicedo, 1309.5850] [Kawaguchi-Matsumoto-Yoshida,1401.4855]

_ T 2 af a3 —1 1 —1
SyB = 4/d o (v —e )Str{g 3&”{1_77;3903 dag

> A deformation parameter 7

» The skew-symmetric linear operator R

Ry(x) =g~ 'R(gzg™')g € su(2,2/4)

The action of R is specified by taking an r-matrix



YB deformations of the AdS: x S° superstring

» The action of R-operator
1 . .
rmatrix: - r=orYTG AT ey R(x) = r"1T; Str (T} x)

r = —pd" = const. T; € su(2,2|4)

Condition : The classical Yang-Baxter equation (CYBE)
[R(x), R(y)] — R([R(z),y] + [z, R(y)]) = c[z, y]

(1) ¢ = 4+1 (mCYBE) [(II)CZO(CYBE) ]

> The existence of a Lax pair mmp Integrable deformations

» K -symmetry



A derivation of YB deformed AdS: x S°

B Strategy

expand Sygup to second order in O,

and compare it with the canonical form of the GS action
[ Arutyunov-Borsato-Frolov, 1507.04239] [ Kyono-Yoshida,1605.02519 ]

B The canonical form of the GS action  [cvetic-Lu-Pope-Stelle, 9907202]

+iP01e0TaDy 501 4 i PP 0se,"T D50,
1 s~ - 0(07%)
— ing‘g@lea“gbI’b@g] + 0(94)

af af Z 1
7 :|: 6 F _Fa el Fal"'an
2 ) n! 1 n
n=1,3,5,7,9

> PP =

We can write down the general formulas for deformed b.g.

[ J.S.-Sakatani, 1803.05903] 10



The general formula for YB deformed AdS: x S°

1 ..
Assumption: 7 = 5?‘”’1} AT; T, €s0(2,4) x s50(6)
Cf. [ Borsato-Wulff,1608.03570 ] for the most general case.

B Metric and B-field

g:nn T B:nn — [(g_l o /8)]?:1113

> Gmn - AdSz X S°> metric

> Bfield: ™" (z) = 2nr T T 4@ Killing vector for 7T;

[ Araujo-Bakhmatov-O Colgain-J.S.-Sheikh Jabbari-Yoshida, 1702.02861, 1705.02063 ]
[ J.S.-Sakatani-Yoshida, 1703.09213,1705.07116 ][ J.S.-Sakatani, 1803.05903 ]

11



The general formula for YB deformed AdS: x S°

[ Borsato-Wulff,1608.03570 ]

B Dilaton and R-R fields [ J.S.-Sakatani-Yoshida, 1703.09213,1705.07116 ]
[ J.S.-Sakatani, 1803.05903 ]

<I>’=<I>—I—%log(\/M) —%log(\/H)

/
F = 6_32/\6_18\/}75 (in differential form)

> F' = Z FI; F5 = 4(WAdS5 + wss)
p=1,3,5,7,9

1
> BV F5= §5mnaanF5 Ly, . Interior product along 22"

12



The unimodularity condition

Q. Is a deformed background always a solution of SUGRA ?

A.NO

B The unimodularity condition [Borsato-wuiff 1608.03570]
r[T;,T;) =0 mmp SUGRA solutions

> Abelian rr-matrix : [Z;,7;] =0 (TsT transformation )

e.g. gravity dual of NCSYM, Lunin-Maldacena background
[Matsumoto-Yoshida, 1404.1838] [Matsumoto-Yoshida, 1404.3657]

> Non-Abelian r-matrix : [T;,T;] # 0
eg. r=a1 P3N\ M+ as P1 N\ Ps

[Borsato-Wulff 1608.03570]

13



Non-unimodular deformations and the GSE

B Non-unimodular case

YB deformations give solutions
to the generalized supergravity equations (GSE)

[ Arutyunov-Frolov-Hoare-Roiban-Tseytlin, 1511.05795] [ Tseytlin-Wulff, 1605.04884 ]
Sakatani-san’s and Yoshida-san’s talks

NOTE: A non-dynamical Killing vector field | is contained.

For YB deformed b.g., the Killing vector | is given by

1 T _ m
\/ﬁc’i’n(x/@ )=1

[ Araujo-Bakhmatov-O Colgain-J.S.-Sheikh Jabbari-Yoshida, 1702.02861]

[ The p-field characterizes all fields on deformed backgrounds. ]

14



2. YB deformations
as local B-transformations

15



YB deformations as local f-transformations

YB deformations are a kind of O(d,d) duality transformations

[ J.S.-Sakatani, 1803.05903] [ J.S.-Sakatani-Yoshida, 1703.09213,1705.07116 ]

B The generalized metric ( A bosonic field in DFT )

— B —1 B o Bm kn
—g kn g

> Covariant under the 0(10,10) duality transformations

H' = hTHK, h € 0O(10,10)

‘ B-shift, T-dualities, f-transformations

16



YB deformations as local f-transformations

» (local) p-transformation

m T

H' = eﬁTH€6 e’ = (8 5 ) € 0(10, 10)
> |If we take the generalized metric and the p-field as

Imn 0 mn 1] rmmomn
Hyun = ( 0 gm""") BT (x) = 2nrV T T}
we can reproduce the previous formula for YB deformed b.g.:
Imn + B = (07" = B) s
™mrm ™ mmn ?

» The transformations of RR fields and dilaton can also be understood
as the (local) p-transformation.

17



Comments on local g-transformations

Comment 1

4 )
If B-fields are not composed of r-matrices satisfying the CYBE,
the associated S-transf. generally do not give solutions to

the SUGRA eq. and the GSE.
\. J

Comment 2

[ We can apply g-transformations to almost all backgrounds. ]

[Matsumoto-Orlando-Reffert-J.S.-Yoshida, 1505.04553]

e.g. Minkowski spacetime, , ~roshi
[Fernandez-Melgarejo-J.S.-Sakatani-Yoshida, 1710.06849]
pp-wave, [Okumura-J.S.-Yoshida, 19XX.XXXXX]

3 4 \ari _ [ J.S.-Sakatani, 1803.05903] [Borsato-Wulff, 1812.07287]
AdS3 x §° x T* with H-flux [Araujo-O Colgdin-Sakatani-Sheikh-Jabbari-Yavartanoo, 1811.03050]

It is not straightforward to define YB sigma models for these b.g.
18



Example

B Abelian rrmatrix [Matsumoto-Yoshida, 1404.3657]

1
r = §P1/\P2 [Pljpz] =0

P, : Translation generators of so(2,4)

We take a coordinate system of the AdS: x S° background as

5 Nudztdz” + dz?

»2

dS +d8285 (/Jf:y :0:1:2:3)

dz? A dz! Adx? Adad Adz

Z5

bl

Fs =4 (wAds5 + ws5) WAdS; = —
The associated p—field is

5:?7161/\132:?781/\32

19



Example

For the NS sector, we consider the following matrix

22 0 0 0 0)
( 0 22 —n»n 0 O
(g'-B)"=]0 n 22 0 0],
0 0 0 22 0
\0 0 0 0 2%
2

By taking the inverse of the matrix, we obtain

dz? — (d2%)? + (dx?)? = 22%[(dz!)? + (dx?)?]
2 _ 2
. _n 1 2 1 2*
Bz_z4—|—n2dx Adz”, <D—§loglz4+n2].

This is the NS sector of a gravity dual of NC SYM with [2%,2%] =7 .

[Hashimoto-ltzhaki, Maldacena-Russo, 1999]

20



Example

The undeformed RR 5-form

dz? A da! Adz? Adad Adz

9

Fs5 =4 (wads; + wss) WAdS; = —

?

> STEP1 1 Lpt b2 wAds5J

6_6VF5 =4 (wAds5 —I-ws5) - 45 V WAdSs
dzY A dz3 A dz

9

= 4 (wadss +wss) —4n

» STEP2
F' = e_BéAe_ﬂvFg,

dz9 A dz3 A dz ( 24
+4

9

= —4n

3-form 5-form 7-form
21



3. T-folds from YB deformations

22



3. T-folds from YB deformations

The structure group contains the T-duality group
[ Hull, 0406102]

23



Toy example of T-fold

B A simple example of T-fold [Hull 0406102]

dy? + dz? B, — kx
2 —_—
1+ k222

= &P 7 v)
— /
x-direction ; >\zﬁ] Identified by using T-duality

dy Adz.

Glue using diff. and T-dualities.

24



O(d,d; Z) T-duality monodromy

The background has the T-duality monodromy

(".") The generalized metric on this background is

(0 [y 0 (e 2kaslial)
%MN(m)_(—zkmmesﬁ] 5;;’@)(0 5%)(0 57 |

m) (Y =k

This expression implies

Hun(z+1) = [Q" H(2)Q] . .

where QMy = (58 %%yn 0z ) €c03,3Z). kel

0(3,3; Z) T-duality monodromy
25



Non-geometric Q-flux and O(d, d; Z) monodromy

» The 0(3, 3; Z) monodromy matrix = a constant shift in the B field
B9 =kux BY* — BY* 4+ k
» Non-geometric Q-flux
Qp"" = 0pB™"
Then, the constant shift in the B field is rewritten as

x+1 x+1
g (x+1) — " (x) = / dz'? 0,™" (z") = / dz? Q,"" (x").

The non-geometricity is measured by the Q-flux.

26



T-folds from YB deformations

We can obtain T-folds from YB deformations

(".")
YBb.g: H' = eﬁT’Heﬁ e’ = (56" %n ) € 0(10,10)

Assumption: an (y) — B;nn Y+ an ( present such examples later)
N 7

Constant bi-vectors

By performing the shift y — y 4+ 1, we can obtain

Q-flux: Q ( constant)

Monodromy: (6 6 ) € 0(10,10;7Z).

27



Examples (unimodular)

B Unimodular rrmatrix [Borsato-wulff 1608.03570]

1
=5 [m (D+ My )AP,+nMs APs], D : The dilatation op.

> B-field: B=m (20, +22 0_ + 2”0 +2°05) N0y + 12 (2”04 + 2~ Oy) A D5

» The deformed b.g. is a solution of type IIB SUGRA

de? — dz?  2%[(dz®)? + (d2®)’]  22%datdz” —4nfz 2 deda”
‘ 22 24+ (nex)? 24— (2mz)?
N 2{[22n} +m3) —mmex®| 22 x da® +m (2m 2* — e a?) da?} da
[2* = (2m 27)*] [2* + (12 27)?]
(A m) (27°) —2mp 2?27 2P + pf [ + (22°)° + (2 27)’]
[t = (2ma7)?] [2* + (2 27)?]
By — - [m {22 [+ 2(mpa™)?] — 2mimp (z7)2 2*} da? 4+ {m 2% 2® — 22 [2* — 2 (g 27)?] } do?
[z = (2m27)?] [z* + (2 27)?]
nex” dz? A da?
2t ()’

(dz7)* + dsés ,

m (zdz — 22~ dat)
24— (2mx)?
.8

1 .
d = Eln[[z4_ eno ) [Z4+(w_)21] » (+RR1,3,5,7,9-form field strengths)

]/\d.?;_—k

28



Examples (unimodular)

» Q-flux: Q. *T=n, Q_"T=2n, Q> =m, QT=n, QTP=pn, QF=n.

> The monodromy matrix corresponding to the shift =3 ~ 23 +57*:

gm 28 5
0

m

Hun(@® +07') = [ H(2) Q] v = ( ) € 0(10,10;Z).

We can regarded the deformed b.g. as a T-fold.

NOTE : Until now, there were very few T-folds that can be used
as backgrounds of string theory.
In particular, T-folds with RR fields was obtained for the first time.

The YB deformation is a systematic procedure
to obtain solutions with Q-fluxes in DFT !

29



Examples (non-unimodular)

B Non-unimodular r-matrix [Orlando-Reffert-J.S.-Yoshida, 1607.00795]

1
T:§P0/\D [D,Po]:PQ
m) Non-unimodular

» The p-field :
B=nPyAD =ndyA (20, + 201 + 220 + 2:303)

» The divergence of the p-field is non-zero

Ozia Ony —
I \/H’”»(\/E/B ) 7

30



Examples (non-unimodular)

> The background is a solution of the GSE: [Orlando-Reffert-J.S.-Yoshida, 1607.00795]

22 [d2? — (dz°)? + dp?| =P (dp— p2'dz)?  p?(d6? + sin® 0 dg?)

2 2
ds® = A2 (2 ) + 2 + dsgs
dz A (zdz + pdp) 1 2
By = — b =1 I =-—nd

(+ RR 3,5,7 fields) z' = psinfcos¢, r? = psinfsin ¢, x* = pcosf,

> Q-flux: Q.7 =" =@, =@ =1.

> The monodromy matrix corresponding to the shift z' ~ 2! +771:

sm 26k sm
0 4" |

T

HMN(.II —I—T}‘_l) = [QT'H(;EI)Q]MNj OMy = (

# This background is also regarded as a T-fold.
31



Examples (non-unimodular)

Q. Is there a difference between T- folds of the GSE
and those of the standard SUGRA?

From the divergence formula, the following expression holds:

1
0 _ / On On 0 pgn n 20q

This might imply that the extra vector | is a source
of the trace of the Q-flux.

YB deformations with non-unimodular r-matrices lead to
non-geometric backgrounds.

32



Summery

> We mainly considered YB def. of the AdSs x S° superstring.

> We directly obtained the general formula of YB deformed backgrounds
from the GS action.

» YB deformations can be understood as local g-transformations.
(= Akind of O(d,d) duality transformations )

» We also discussed the global structures of YB deformed backgrounds
based on the CYBE.

» Some YB deformed backgrounds can be regarded as T-folds.
In the case of the generalized supergravity backgrounds,
the Killing vector | is related to the trace of the Q-flux.

33



Discussion

> What is the condition for Poisson bi-vectors ( f-fields ) to give SUGRA
solutions?

In the case of YB def., the p-field is a Poisson bi-vector:
B (z) = 2nr I T T Blmla 8q5|’“"?] — (0 (> Poisson bi-vec. )

However, there exists Poisson bi-vectors that are not associated
with r-matrices.

> Generalization to the membrane sigma models

» Can YB deformed backgrounds be interpreted as T-folds
even after receiving higher order a’-corrections?

34



Thank you
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Appendix
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The cases of non-Abelian rr-matrices

» Unimodular r-matrix: [Borsato-Wulff 1608.03570]
r=a1P3 N Liz+as Py N\ P

» The resulting deformed background is given by

24

2 __—6 n°(aip” + a3) o 4(q.2 312 2 102 2 312
ds® =z 1+ 2 (dp* + (dz°)* + p°db*) + n*(a1pdp — azdx”)

—(d2®)? + dz?
+ =

_n(alpzdx?’ + aspdp) A dO

+ d8§5 ,

B= 1 _ 2 _
A+ 2 (a2p? + a2) x- = pcost,x” = psinl
4

I3 =— —Zd:r:o A (a1 pdp — agdazg) Adz,
2
20 1 24

F5 :4(6 WAdSs —|—ws5), b= — lOg

i R

The background is a solution of the usual type 11B SUGRA.



The cases of non-Abelian r-matrices

The above deformed background is reproduced by the
following sequences:

1. TsT transformation

3

T-dual: 23— 33, 60— 04 anz®, T-dual: 73 — 23

2. Coordinate transformation

p=+/(x1)? + (22)2, 0 = Arctan(z?/x")

3. TsT transformation

T-dual: ' - 7', #2 =22 4ami', T-dual ' — !



The generalized supergravity equations

[ Arutyunov-Frolov-Hoare-Roiban-Tseytlin, 1511.05795 ] [ Tseytlin-Wulff, 1605.04884 ]

The generalized supergravity equations ( GSE ) }

1
Run — - Hyxr HN®Y + Dy Xy + Dy Xy = Tun
4
1 1 1
3 DR Hpenrw + §foKMN + EfMNKLPFKLP = X8 Henmiv + DuXy — DnXr,

1
R—EH§+4DMXM—4XMXM:O,

A% Fp— ZNsFp++(INFpo)— HyAxFpro =0,  Frina. =€ Friny..

Here, we have ignored dilatino, and gravitino.

The modifications are characterized by / and Z.
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The generalized supergravity equations

[ Arutyunov-Frolov-Hoare-Roiban-Tseytlin, 1511.05795 ] [ Tseytlin-Wulff, 1605.04884 ]

The generalized supergravity equations ( GSE ) }

Ryn — % Hyxr Hy™" +IDMXN + DNXJ»I' =Tun,

%DKHKMN + %J—"K]-"KMN + f—QFMNKLp]?KLP * XX Hicnn + DXy — Dv X |
R-— % H2 + 4Dy XM —4Xp XM =0,

d+ F, J[ Z N #Fy+ +(I A Fp_s) J[ HyA%Fpin=0,  Frns. = Frn,.

Here, we have ignored dilatino, and gravitino.

The modifications are characterized by / and Z.
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The relation between | and Z

DI, +D,I,, =0 ( Killing equations )
I" Hyppp + 20y, Zy) = 0 Z. I™ =0

By fixing the gauge of Bas £L;B =0,

The GSE can be characterized by the Killing vector /
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