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§1. Introduction
To do
e understand T-duality geometry

e geometry of double field theory
section conditions, closure conditions, generalized Bianchi identities,
etc.

— We use super symplectic geometry (BRST-BV formalism of TFT)
e coordinate independent and GL(2D) covariant formalism of DFT

e simplify DFT computation methods and formulas



Plan of Talk
2. O(D, D) covariant double field theory (notation)
3. Supergeometry (graded manifold and pre-QP structure)

4. Section conditions, generalized fluxes and generalized Bianchi
identity via supergeometry

5. GL(2D) covariant DFT



§2. Double field theory Siegel '93, Hull-Zwiebach '09

M an original D-dimensional spacetime

——~—

M: a D-dimensional T-dual spacetime
2D-dimensional doubled space M = M x M,

XM = (Xaz, XM): coordinates of the doubled space
hat index: 2D dimensional indices,

unhat index: D dimensional indices

M,N,---: spacetime indices,

A, B,---: tangent flat space indices



We assume O(D, D) an invariant metric 7, -

Generalized Lie derivative and section condition
(closure condition)

The generalized Lie derivative for VM with a gauge parameter AM.

L does not satisfy the Leibniz rule,

AM(A1, Ao, V) = L, 0,V = [La, LaJVM # 0.
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The condition of AM (A, Ay, V) = 0 is called the closure condition
(section condition). The closure condition is

N (0 @) (95 P) = 0.

We choose a D dimensional physical spacetime in the 2D
dimensional doubled spacetime, on which AM(A, A, V) = 0 is
satisfied.



Generalized metric and generalized vielbein
H yrx: a generalized metric,

e
< gMHN —gMPbpN )

Yoo =
MN barpgt™™N  gun — bupgt Coon

E;‘M: we use the generalized vielbein,

oM _ Ea™ Epu) _ [ ea™ es”Brm
i EAN EB . eA BIN B, 4 B, ByBEL )

wof8

77;l . O(D, D) invariant metric.



The generalized Lie derivative is

LAEY = AVOGEY + (M nga0pA® — 0gAM)EY.

Lorentz frame

25 an O(1, D —1) xO(1, D —1) invariant double Lorentz metric.
The generalized metric H ,, i are written as



§3. Supergeometry of double field theory
Deser, Stasheff, '14, Deser, Saemann '16, Heller, NI, Watamura, '16

Graded manifold

A graded manifold is a 'manifold’ with Z—graded coordinates.
Grading is called degree.

Note: (doubled) spacetime is a degree 0 part of graded manifold.
pre-QP-manifold

A graded manifold is called a pre-QP-manifold of degree n if it has
the following structure.



1, (nondegenerate) graded Poisson bracket {—, —} of degree —n.
2, (). a graded vector field of degree +1

Note: We take a generator 'Hamiltonian’ function © € C*°(M)
of degree n + 1 such that Q(—) = {©, —}.

If Q% =0, a pre-QP-manifold is called a QP-manifold. Q% =0 is
equivalent to {©, 0} = 0, the classical master equation.

Note: © corresponds to a BRST charge.



Example: Derived bracket construction of Courant
algebroid Roytenberg '99

Local coordinate of a graded manifold T*[2|T[1]M is (x*,&;, q*, p;):
canonical conjugate pair coordinates of degree (0,2,1,1).

{2°,&} = —{&,2°} =0, {d",p;} = {pj,q'} = 0}

We consider a Hamiltonian function © of degree 3, which gives an
odd vector field Q(—) = {©g, —},

O = &iq".
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A degree 1 function, X*(z)p; + a;(x)q", is identified to
X+a=X"(2)0; + aj(z)dx* € T(TM & T*M).

The Dorfman bracket for X +a and Y + 3, is

X+, Y +0]p=—-1X+a,00},Y + 5}
=[X,Y|+ LxB - ya,

The anchor map is p(X + a)f = —{{X + o, 0}, f} = Xf.

All the identities of a Courant algebroid are given from {©,, Oy} = 0.
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Derived bracket construction of generalized Lie
derivative

Take 2D dimensional doubled spacetime M.

We take a pre-QP-manifold (M = T*[Q]T[l]]\/f\,{—,—},Q =
{©,—1}). Note: We do not require Q* = 0.

A generalized Lie derivative is defined by a derived bracket,
LyV' =V, Vp=[V,.V]=—-{{V,0}, V',

for generalized vector fields V, V’, which are functions of degree 1.

Note: A graded Poisson bracket has automatically O(D, D) str.
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Closure condition
In general, {©,0} # 0 on a pre-QP-manifold.

We obtain the following identity of the derived bracket for any
f,9,h € C=(M),

1. (g, b)) ={{f.©},{{g,0}, h}}
=[[f,g], h] + (1) HHntDUglntDg [ £ p]]

+ (-1 {{{0,0), 1.9}, A}
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Case 1, If {©,0} = 0, the derived bracket |-,:] satisfies the
following Leibniz identity of degree —n + 1,

f> [g, W] =[[f, 9], ] + (=)W=t DUgl=ntD g 17 p)).

[—,—] = {{—,©}, —1}: the Dorfman bracket of a Courant algebroid.

Case 2, We can relax the condition to

{{{{@7 @}7 f}v g}v h} = 0,

which is sufficient for closure of the derived bracket. We call the
condition the weak master equation. It is the section condition in
DFT! Deser-Saemann '16, Bruce-Grabowski '16
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Local coordinates

XM = (X, XM) is a general coordinate on doubled spacetime
M=Mx M.

(XM,EM,QM,PM): local coordinates of degree (0,2,1,1) on a

graded manifold.

The Poisson brackets are
{XMa:N} — _{“NvXM}
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DFT basis (Clifford basis) and O(D, D) metric

We can take basis (Q’M, lew) of degree 1 coordinates such that

Q™M Q"™y =M, AP, P} =ngx, {Q™ Pi}=0,
which defines a Clifford algebra. We have

~ 1 ~ ~ o~ 1 ~
QM= —=(QY —nMNPyg) , Pr = —=(Py+nyxQ"),

V2 V2

A generalized vector field is identified to
M M
V70, ~V P]’W.
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Hamiltonian and generalized Lie derivative

We require O(D, D) invariance. The simplest choice is
@0 — UMNEMP]/V.

A derived bracket using this O gives the correct generalized Lie
derivative

LAV =[A, V]p =—{{A, 600}, V}
AN VM (P a0pA° — D AM VN
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Closure condition

{Bp, 00} = 0 is not satisfied,
{60,080} =" VEEg #0.
The closure condition is {{{{B©g, 00}, V1},Va},V3} = 0, which is
~ ~ A ~ p Q
20MViN V05 Vi? = 20V 0, VPV p) P = 0,
This condition holds if V' satisfies the section condition,

oMV, vE =o0.
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§4. Twist and generalized fluxes

We introduce fluxes by a canonical transformation called twist.

Twist .
eéo‘f:f+{f,04}—|—§{{f704}704}—|—"',
for f € C>°(M). Here « is a local function of degree 2,

corresponding to a gerbe connection (a stack of groupoids). It is
degree-preserving and obeys

{e% f,e%g} = e*{f, g},

for all functions f, g on graded manifold.

19



Closure condition
If a Hamiltonian function © is twisted by a, ® — O’ = %O, the
closure condition is changed to

{{{{@/7 @/}7 f}vg}7 h} = 0,

l.e.

e {{{{O,0},e % f} e %g} e %h} = 0.
e A twist does not change a D-dimensional physical spacetime
M C M.
e A twist introduces flux terms to the section condition for a
generalized vector field.
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Local Lorentz frame

Q‘Z‘,Pj: flat tangent and cotangent coordinates of degree 1

corresponding to the local Lorentz frame. The DFT basis is

PO _ 1 - B
_\/_(QA AB ) : P}l :ZE(P_—l_nABQB)

@

DFT has the following three twists,

M AB pr B

. M NP p/ pf _ . - B CApr b
u=up (X)n" " PPy, w:=u(X)n =P
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Twist in DFT

Then, the Hamiltonian function twisted by £ becomes

s
O =e2°EQ,

~ 2 1 - - 1 ~ ~ 2
_ M=z pA — ... pAp/Bp/C | —%.  p'Mp/NpC
_Efx =P +3|]:‘B(7P P~P +2<I>OMNP PP
where
_ . . _O...pA pB
‘F‘BC* o 3Q[ABC]’ (I)CMN o QCABE ME N
Here Q.- = E;MaMEgNEéN is a generalized Weitzenbock
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connection and QMN? = EAMEBNECpQ Aldazabal, Baron,

Marques, Nunez, '11

We obtain the correct forms of a generalized flux and a generalized
Weitzenbock connection.
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General form
The most general degree 3 Hamiltonian which consist of

(XM, — P/M P/C’)

=
Or =p (X2 P4+ p I (X)E g PN 4 3 Fipe(X)PAPP PO
+ %cb o o (X) PN PN prC
T %AEEM(X )PHIPAPE 4 %‘I’MNﬁ(X ) PN PN P,

We obtain more general fluxes.
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5. Generalized Bianchi identity via pre-QP-
manifold

Bianchi identity of fluxes in supergravity

In SUGRA, Bianchi identities of fluxes are equivalent to the classical
master equation {©,0} = 0, where O is a Hamiltonian twisted by

fluxes. Heller, NI, Watamura '16
1
O = ,OMN(ZU)quN + WMN(ZL‘)fMpN + §HMNP(SU)QLQMQN
1 1

1
+ 5Fon(@)a"a oy + Q1 (@) pupn + 5 RN (@)prpap.

25



Examples

1. Original Neveu-Schwarz H-flux
H=dB, F=0, Q=0 R=0.

1
0 = 65360 — §MqM + §HLMN(33)QLQMC]N7

where B = 2By (z)gMq”.

{©1,01} = 0 is equivalent to dH = 0.



2. Fluxes with metric Blumenhagen-Deser-Plauschinn-Rennecke 12

H=VB
F=T+p3'H

Q =VpB+ NS,

R =[8,0]5 + N5 H,

where V is a covariant derivative with respect to the Riemannian
connection and I’ is a torsion tensor.
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Let

1 1

B = §BMN(33)QMQN7 B = §5MN(33)]9M]9N7
e=-e,i"(2)g pu, e ' =e(x)g" pa.

and consider twist Oy = ¢ ¢l 9980,

From ©5, we obtain forms H, F, (), R in the previous page, and

{@27 62} — 07

gives the correct Bianchi identity of H, F, ), R.
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3. Flux on Poisson manifold background
Asakawa-Muraki-Sasa-Watamura '15, Bessho-Heller-NI-Watamura '15

Let M be a Poisson manifold with a nondegenerate Poisson bivector
T e D(AN*TM).

H=F=Q=0 R=_frfs

where 3 is a B-field.

We take m = 7% (z)pip;, 71 = %Wi_jl(x)qiqj, and {04,604} =0
under the twisting,

O, = 28’ 19T 0-BQy,
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DFT: pre-Bianchi identity
Carow-Watamura, NI, Kaneko and Watamura, '18

In a pre-QP-manifold, {©f,0r} #£ 0.

We propose a weak version of the Bianchi identity equation,
B(©r,0p,a) ={0p, Op} — {0y, Oy} = 0.

where « is a twist and Og is a Hamiltonian function without fluxes.
Here the Hamiltonian function with generalized fluxes is

o s_a_ s ]
@F :E;XMEMP/A_l_S'Jf éé AP/BP/C_|_§(I)6M P/MP/NP/C
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A

For example, a twist by a« = F = EjMnABP’A Pz% gives

M

B(@Fa@():E)

A A 1 A A ~ ~ ~ ~ & =2

_ . QRF . A “»wPROY. . O... . QprU M p/'N prA pI'B
1 A A A A ~ ~ ~ ~

i _<77RS(I) o (I)S'ﬁQ . nRSQ o QgpQ)P,MP,NP,PP/Q
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The pre-Bianchi identity gives

M A A A

EAM@QM+QMM:0,

2 g 3
~ B 0T e+

j2 C
—Ei06®8 57 15%6mn

1 p @ o

b -~

R R
RN ® pQ]_QR[MNQ PO~
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1st and 2nd: local expressions of ABE and (I)ANﬁ

3rd: the generalized Bianchi identity in DFT in

Aldazabal, Marques, Nunez, '13, Geissbuhler, Marques, Nunez, Penas,

4th: New generalized Bianchi identity for @ - . !

5th: trivially satisfied.

'13.
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General form
The most general degree 3 Hamiltonian which consist of

(XM,EM,P/M,P/C).

N e DA Trone i .
@F:Qg@m:MP“+p§QXﬁ%ﬂﬂV+§fﬁ%@mP%P@P@
1 IM pIN 51C

1 N A, L NI /N o P
+§A;‘§M(X)P’ P P! +§\I’MNP(X)P/ PPt

@0 ZUMNEMPJ/Q.

We obtain more general generalized Bianchi identity.
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§6. GL(2D) Covariant DFT from pre-QP-manifold

We generalize the formalism to a covariant pre-QP formulation.
Differential geometry of DFT  Jeon, Lee, Park, '11, Hohm, Zwiebach '13

Let XM = (X, XM) be local coordinates of a 2D-dimensional
curved doubled spacetime with GL(2D) indices, M, N, ---.

A A

I,J,--- for the indices of an O(D, D) frame with an O(D, D)
metric n!”.

jl,B%,--- for the indices of local double Lorentz frame with an
O(D —1,1) x O(1,D — 1) metric n5.
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An ansatz of the total vielbein is

A

P
EM=F

I M
ki
where EfM is the background vielbein and E
vielbein.

AN

I

Is the fluctuation
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Covariantization

We define a basis =Y. of degree 2, corresponding to the covariant
Y g p g

derivative V ;, with affine connection I' and spin connection W,

T= :M -+ FMNP(X)QNPp -+ WMiJ(X)QIPj.

P—
e
—

v
NI
The Poisson bracket {—, =Y } with the vector fields V' Py, VIP;
give their covariant derivative:

{(VM(X)Py, EX} = V; VM(X)PM,
(VI(X)P;,EY} = Vi VI(X)P;.
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Vielbein and metric condition

Require the condition (the vielbein postulate),
{E NPNQI '—‘V T 07

then, VMEfN =0, Vyni;=0,and Vyngp = 0. and we obtain
conditions of generalized connections,
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Covariant Hamiltonian function and generalized Lie
derivative

A Hamiltonian function is covariantized as

vV __ MN:'V /

The generalized Lie derivative is defined by the derived bracket,
LXV — _{{A7 90V}7 V}

The covariant generalized Lie derivative is given by replacing the

39



derivative in the generalized Lie derivative by V

LYV =ANY (VM 4 (VM A g — VgAY

Closure condition

The covariantized closure condition is
{{{{@)Ov7 @Ov}7 ‘71}7 ‘72}, ‘73} — O

This condition leads to the following condltlons for the spm
connection WMf and arbitrary generalized vectors Vl, Vg and V3,
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The following conditions are sufficient for the closure condition,

s

aM‘Aflj‘A/QjaM‘A/sf - QaM‘AG[JaM‘A/QI Vs =0,
(=231 + 3W[jjf(])EKM6’MV1L = 0,
H H H
2Ri55i) ~ WaiW gy — 2@W; " = 294 Wa iy = 0.

41



Solutions: two examples

1) DFT on group manifold The second condition is satisfied by
taking,

SWiiir) = 2915k
Then, the third condition becomes
i
Rizipy W7 iWimes =0

1) corresponds to DFT on group manifold, where W is a structure
constant, 3W[jjf<] = Fjjf(. Blumenhagen, Hassler, Luest, '14
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2) generalized Scherk-Schwarz compactification The conditions
can be satisfied by

Wiiky = Qiiky

KMo 1N _ PM > N
Qkij anl = Ej@?] 8]5EfQ6MV1 = O.

A

With this choice, R;;n; =0, s0 the third condition becomes

P
wEii aEQ@@@m_o

2) corresponds to the generalized Scherk-Schwarz compactification.
Aldazabal, Baron, Marques, Nunez '11, Grana, Marques, '12, Berman, Lee '13
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Twist

Possible twist functions made from P’, P’ and P’ are

IMpr D K. TAID B AN ! B
.. M_NPpl pf ~ .~ J KIpr p/ _ . — B .CApI B/
ui=1up 1 PM o WI= U P, Ui=ugn D5

Here ATV AAJT and AAM are GL(2D) matrices and we can take
them as vielbein £ E and SAM.
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We obtain twist of the Hamiltonian function,
@F 26%5E@0v
_¢o M=V A 7 Ara
=i BT T 517 Ase 57t
Pre-Bianchi identities

We consider the pre-Bianchi identity for DFT on covariantized
pre-QP-manifold.

B(Op,0p,a) :={Op, Op} — {0y, Oy} = 0.

gives the generalized Bianchi identities.
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Q@NSEMSEN + SCMgijé + QFIAKjEKMEjIAEéJ — QVMle%

EMG 11+ QM 5 s BP1EC

1. x 1 : ~ S

€4 0uTpep =37 inTren ~ LikQ 5P B GE" 5
A L A

€5 Vst 57" 189815 — Yai ik

D€ VAT 5 s P BP 5+ ST OV 5 JEC BP0,

94 ik~ 0150 ep BB EC B =

46



§. Summary and outlook

e We formulated DFT geometry in coordinate independent form
using pre-QP-manifold.

A generalized Lie derivative is defined by a derived bracket,
LyV' =—-{{V,0},V'}.

The closure condition (the weak master equation) is the weak master
equation,

{{{{67 @}7 f}7 9}7 h} = 0.
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Generalized fluxes are introduced by twist,
OF = €*0,
A generalized Bianchi identity is a pre-Bianchi identity,

B(©r,0¢,a) ={0p, Op} — {0y, Oy} = 0.

We confirmed this formulation gave known results and new
completions in the GSS compactification and DFT on group
manifold.

48



Outlook

e Inclusion of a dilaton

e Nonabelian/Poisson-Lie T-duality
e Physics: action, quantization, etc.
e exceptional field theory

e Characteristic classes of T bundles and nongeometric fluxes. (Q
defines a complex and cohomology.)
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Thank you for your attention!
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