Local structure and dynamics of an icosahedral quasicrystal and its 1/1 approximant from Solid-State NMR

C. Odin^{#1}, JC. Ameline¹, A.P Tsai², B. Toudic¹

¹IPR UMR UR1-CNRS 6251, University of Rennes I, Rennes, France, ²IMRAM, Tohoku University, Sendai, Japan,

In contrast to X-rays/Coherent neutron techniques that mainly measure space-time correlation functions of all atoms in the reciprocal space, solid-state NMR is a local probe that is very sensitive to short-ranged structural patterns and dynamics, with atomic selectivity. Moreover, it is recognized that both techniques are complementary to understand structure and dynamics at different time-scales. Both benefit from Large Scale Facilities (synchrotron, high field NMR, neutron reactors ...) allowing unprecedented space-time resolution.

In this presentation, we discuss how solid-state NMR experiments can shed light on structural organization, instabilities and dynamics in complex molecular systems. In particular, 45 Sc solid state NMR experiments on the 1/1 approximant Zn_6Sc and quasicrystal ZnScAg at different fields and temperatures are reported, and discussed in complementarity to available structural studies.

Acknowledgements: We acknowledge IRRMN FR3050 CNRS for support of High Field NMR experiments in Lille. This research received FEDER financial support (FEDER 34722-Prin2Tan) for funding NMR spectrometers in Rennes.

^{*}Corresponding author: christophe.odin@univ-rennes1.fr