4f electron-hole analogy in Tsai-type quasicrystalline approximants Au-Al-R (R = Ce and Yb)

Yuji Muro1,#, Natsu Ito2, Akira Sakurai2, Ryuji Tamura2 and Tomohiko Kuwai3

1 Faculty of Engineering, Toyama Prefectural University, Imizu-City 939-0398, Japan
2 Department of Materials Science and Technology, Tokyo University of Science, Katsushika 125-8585, Japan
3 Department of Physics, University of Toyama, Toyama 930-8555, Japan

#Corresponding author: ymuro@pu-toyama.ac.jp

We have studied the effect of composition on the hybridization between 4f and conduction electrons, called c-f hybridization, in the cubic quasicrystalline approximants Au-Al-R (R = Ce and Yb) by the measurements of magnetic susceptibility \(\chi(T) \), electrical resistivity \(\rho(T) \), specific heat \(C(T) \) and thermoelectric power \(S(T) \).

Figure 1 shows the results of \(\chi(T) \) for \(\text{Au}_{x}\text{Al}_{86-x}\text{Yb}_{14} \) (51 \(\leq x \leq 64 \)), where the data for \(x = 51 \) are obtained from ref. [1]. Below 300 K, a Curie-Weiss behavior is observed only in \(x = 52 \) down to 150 K. The effective magnetic moment \(\mu_{\text{eff}} \), Weiss temperature \(\theta_{\text{W}} \) and \(T \)-independent term \(\chi_{0} \) are estimated as \(\mu_{\text{eff}} = 4.9 \ \mu_{\text{B}}, \ \theta_{\text{W}} = -160 \ \text{K} \) and \(\chi_{0} = -1.9 \times 10^{-3} \ \text{emu/mol-Yb} \), respectively. The magnitude of \(\chi \) decreases with increasing \(x \), indicating that the Yb valence of Au-Al-Yb varies from an intermediate state to divalent one due to the enhancement of c-f hybridization with increasing the concentration of gold.

On the other hand, all of \(\chi \)'s for \(\text{Au}_{y}\text{Al}_{84-y}\text{Ce}_{16} \) (62 \(\leq y \leq 70 \)) and \(\text{Au}_{76}\text{Al}_{10}\text{Ce}_{14} \) obey the Curie-Weiss law down to 50 K, as shown by \(\chi^{-1} \) vs \(T \) in fig. 2. The \(\mu_{\text{eff}} \) increases from 2.41 to 2.49 \(\mu_{\text{B}} \) with increasing \(y \). These values of \(\mu_{\text{eff}} \) are close to 2.54 \(\mu_{\text{B}} \) for a free Ce\(^{3+} \) ion, indicating the stable trivalency of Ce in Au-Al-Ce. The \(\theta_{\text{W}} \)'s are all negative, and the absolute values decrease from 13.5 K for \(y = 62 \) to 5.8 for \(\text{Au}_{76}\text{Al}_{10}\text{Ce}_{14} \). This feature indicates the suppression of c-f hybridization in Au-Al-Ce by the increase of Au, that is opposite to the \(x \) dependence of Au-Al-Yb. This contrast should result from the 4f electron-hole analogy between the strongly correlated Ce and Yb compounds.

![Fig.1: Magnetic susceptibility of Au-Al-Yb quasicrystalline approximants.](image1.png)

![Fig.2: Magnetic susceptibility of Au-Al-Ce quasicrystalline approximants.](image2.png)