15 years of Tsai lab
- From the eyes of a staff member -

Nobuhisa Fujita

IMRAM, Tohoku University,
Sendai 980-8577, Japan
Prof. A.P. Tsai (my personal view)

- He was neither a physicist nor chemist, but metallurgist.
- He was an experimentalist by his nature, and one of the best experimentalists I’ve ever met.
- He was keen on something new & unexpected and on being a pioneer, but remained objective in thinking.
- He was humble and open minded in listening to his young colleagues & students.
- He allowed the lab members to have a lot of freedom and offered generous support for research.
- He was frank and honest when talking.
15-year chronology: members

Visiting scientists:
Prof. T. Janssen, Prof. P. Thiel, Prof. D. Shechtman, Prof. M. deBoissieu, Prof. E. Belin-Ferre, Prof. J.M. Dubois, Prof. K. Chattopadhyay, Prof. S.F. Wang, Prof. H.R. Sharma, Dr. C. Cui, Dr. G.H. Gebresenbut Prof. S. Suzuki, Prof. H.R. Trebin, Dr. M. Mihalkovic, Prof. L.S. Hong
Staff members: combination of different disciplines (*experimental* !)

Prof. A.P. Tsai

Metallurgy

Dr. S. Kameoka

Catalyst chemistry

Dr. N. Fujita

Condensed matter physics (theory)

Dr. S. Ohhashi

Technical staff:
Synthesis of alloys,
SEM, TEM

Dr. T. Kojima

Solid state catalysts,
Magnetic materials,
Metallic thin films
Research activities

Effects of alloying on structure & properties

Cd-Yb iQC & approximants Structure modeling (CPG)
Mg-Zn-Y high-strength alloys
QCs as catalyst precursors
Pseudoelements for catalysis: PdZn(≈Cu), CuNi(≈Pd), NiZn, PtZn
Spinel CuFe$_2$O$_4$ as a catalyst precursor

Cd-Mg-Yb, Cd-Mg-Ca high-strength alloys (SO)
Microstructure design for better catalysts
Catalysts for Carbon nanofibers
Fabrication of fine porous Au catalysts through leaching
Fabrication of alloy catalysts through hydrogenation

Effects of alloying on structure & properties

Cd-Yb iQC & approximants Structure modeling (CPG)
Mg-Zn-Y high-strength alloys
QCs as catalyst precursors
Pseudoelements for catalysis: PdZn(≈Cu), CuNi(≈Pd), NiZn, PtZn
Spinel CuFe$_2$O$_4$ as a catalyst precursor

Cd-Mg-Yb, Cd-Mg-Ca high-strength alloys (SO)
Microstructure design for better catalysts
Catalysts for Carbon nanofibers
Fabrication of fine porous Au catalysts through leaching
Fabrication of alloy catalysts through hydrogenation

2019/7/5 QSC2019, Memorial session for Prof. Tsai (Sendai, 25 June 2019)
Clusters packing geometry in i-QC and approximants (NF)

We have renewed the way to understand the structure of Al-based F-type iQC & approximants as a packing of two kinds of small cluster centered at the nodes of a canonical-cell tiling.

Application of quasicrystals for reinforced Mg alloys (SO)

Single QC growth | Microstructure containing QC | Orientation relationships

QC-reinforced Mg alloys: Zn-Mg-Zr Qc, Mg-Cd-Yb Qc in Mg

Designing new catalysts through the fusion of metallurgy & catalyst chem.

Metallurgy (AP Tsai)
Knowledge about crystal structures, surfaces & microstructures

Catalyst chem (S Kameoka)
Knowledge about adsorption states & catalytic reactions

Aim: to find new (unexpected) routes to efficient catalysts.

Tuning the electronic structure and/or microstructure
New understanding on the generation of active sites
Tuning the electronic structure for catalysis
(Pseudoelement: PdZn ≈ Cu for SRM)

CO₂ selectivity of steam reforming of methanol and valence electronic structures for PdZn, Cu and Pd

Tuning microstructures through eutectic reaction + leaching

Eutectic microstructure (Lamellar) with porous Au (or Pt) layers

Fe$_3$O$_4$: CO + H$_2$O \rightarrow CO$_2$ + H$_2$ (exothermal)

Pt: CH$_3$OH \rightarrow CO + 2H$_2$ (endothermal)

Overall CH$_3$OH + H$_2$O \rightarrow CO$_2$ + 3H$_2$ (endothermal)

Creation of catalytic active sites at microscopic twin boundaries

PG(Ag₃Au) with **cHNO₃**

PG(Al₂Au) with **NaOHaq.**

Twin boundary (TB) defects in the fcc lattice of bulk gold can create close-packed rows of low-coordinated atoms (W-chains; CN= 5 or 6) as active sites on the stepped {211} surfaces of bulk Au.

Education & honors

(Number of admitted graduate students)

<table>
<thead>
<tr>
<th>Year</th>
<th>Master</th>
<th>Doctor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2007</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2010</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2013</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2016</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2019</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Degrees
- **Ph.D.**
- **Master**
- **Doctor**

Honors
- **1st Jean-Marie Dubois Award**
- **Honda Frontier Award**
- **Honorary Doctorate at Institute of National Polytechnique de Lorraine**
- **Masumoto Hakaruu Award (JIM)**
- **Honor Medal with Purple Ribbon**
- **Distinguished Professor (Tohoku Univ)**
- **Honorary member (Academia Sinica)**
- **Prof. Shechtman’s Nobel prize in chemistry**