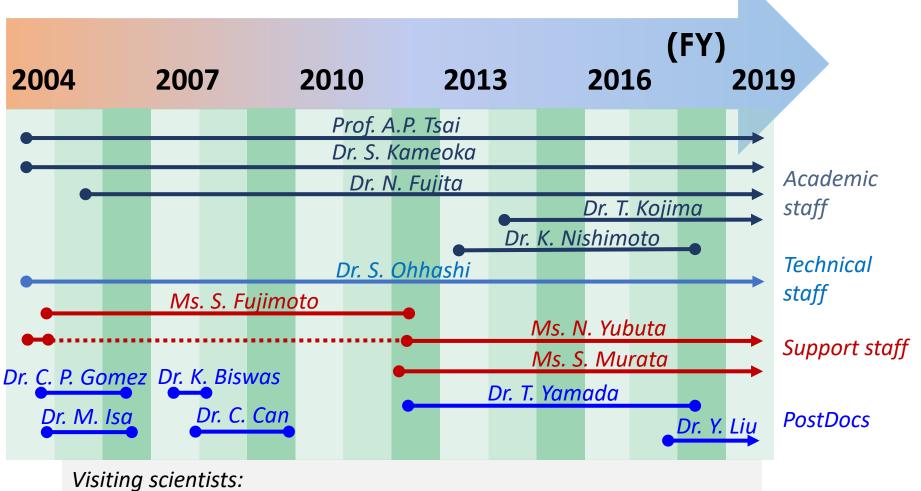


15 years of Tsai lab - From the eyes of a staff member -


Nobuhisa Fujita

IMRAM, Tohoku University, Sendai 980-8577, Japan

Prof. A.P. Tsai (my personal view)

- He was neither a physicist nor chemist, but metallurgist.
- He was an experimentalist by his nature, and one of the best experimentalists I 've ever met.
- He was keen on something new & unexpected and on being a pioneer, but remained objective in thinking.
- He was humble and open minded in listening to his young colleagues & students.
- He allowed the lab members to have a lot of freedom and offered generous support for research.
- He was frank and honest when talking.

15-year chronology: members

Prof. T. Janssen, Prof. P. Thiel, Prof. D. Shechtman, Prof. M. deBoissieu,
 Prof. E. Belin-Ferre, Prof. J.M. Dubois, Prof. K. Chattopadhyay,
 Prof. S.F. Wang, Prof. H.R. Sharma, Dr. C. Cui, Dr. G.H. Gebresenbut
 ²⁰¹ Prof. S. Suzuki, Prof. H.R. Trebin, Dr. M. Mihalkovic, Prof. L.S. Hong

Staff members: combination of different disciplines (*experimental* !)

Prof. A.P. Tsai

Metallurgy

Dr. S. Ohhashi

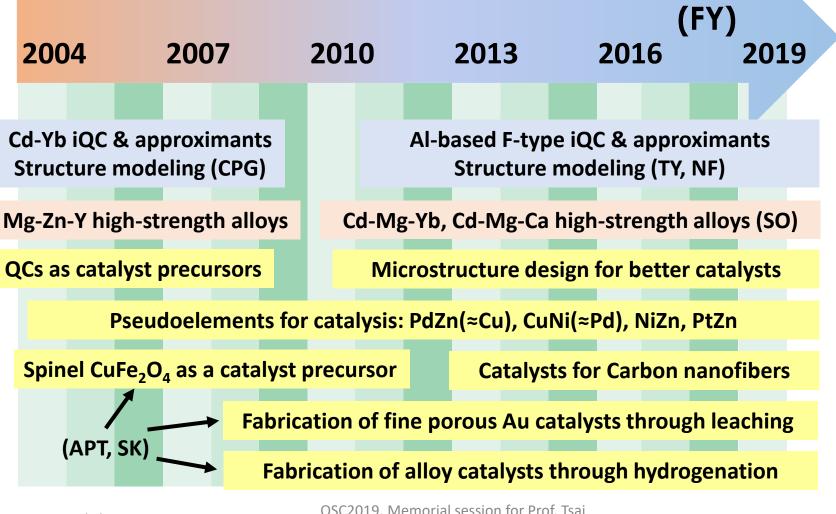
Technical staff: Synthesis of alloys, SEM, TEM

Dr. S. Kameoka

Catalyst chemistry

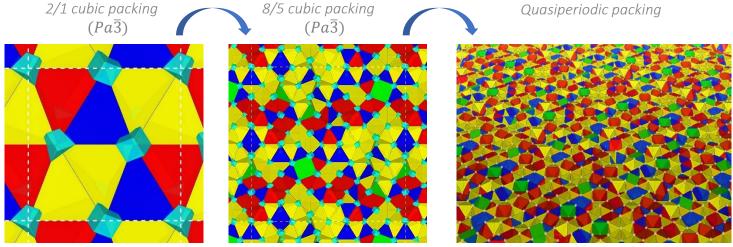
Dr. N. Fujita

Condensed matter physics (theory)



Dr. T. Kojima

Solid state catalysts, Magnetic materials, Metallic thin films


Research activities

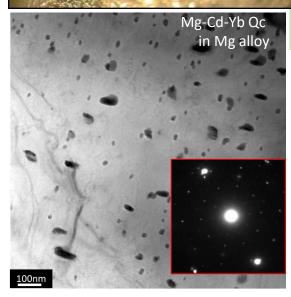
Effects of alloying on structure & properties

Clusters packing geometry in i-QC and approximants (NF)

We have renewed the way to understand the structure of Al-based F-type iQC & approximants as a packing of two kinds of small cluster centered at the nodes of a canonical-cell tiling. mBC pMC 8/5 cubic packing Quasiperiodic packing

[1] N. Fujita, H. Takano, A. Yamamoto and A.P. Tsai, Acta Cryst. A 69, 322–340 (2013).
 [2] Y. Hatakeyama, N. Fujita and A.P. Tsai, Journal of Physics: Conf. Series 809, 012007 (2017).
 [3] N. Fujita, Annals of Physics 385 (2017) 225.

Application of quasicrystals for reinforced Mg alloys (SO)



 Single QC growth
 Microstructure containing QC
 Orientation relationships

 Cn-Mg⁻Dy Qc
 Eutectic structure with QC and α-Mg phases
 EBSD pattern for Qc

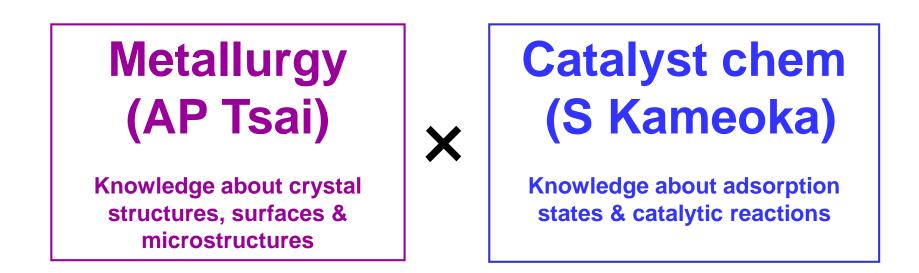
 1 mm
 1 g-f1
 1 g-f1

 1 g-f1
 1 g-f1
 1 g-f1

QC-reinforced Mg alloys: Zn-Mg-Zr Qc, Mg-Cd-Yb Qc in Mg

[1] S. Ohhashi, J. Hasegawa, S. Takeuchi, A. P. Tsai, *Philos. Mag.* **87** (2007) 3089.

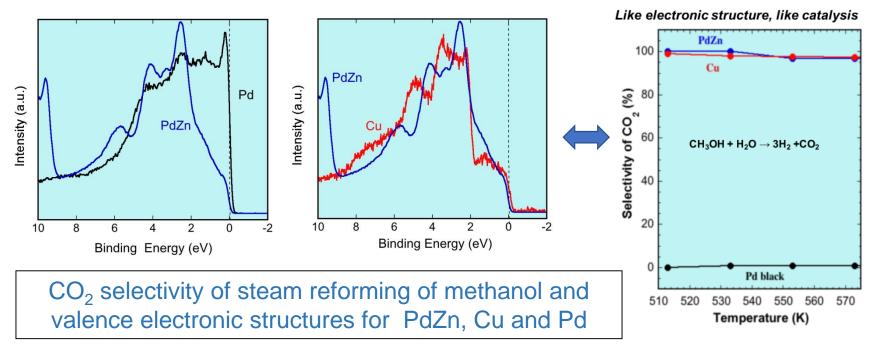
[2] S. Ohhashi, E. Abe, M. Tanaka, A.P. Tsai, Acta Mater. 57 (2009) 4727.


[3] S. Ohhashi, A. Kato, M. Demura, A.P. Tsai, *Mater. Sci. Eng. A* **528** (2011) 5871.

[4] S. Ohhashi, K. Suzuki, A. Kato, A.P. Tsai, Acta Mater. 68 (2014) 116.

[5] R. Tanaka, S. Ohhashi, N. Fujita, M. Demura, A. Yamamoto, A. Kato, A.P. Tsai, *Acta Mater.* **119** (2016) 193.

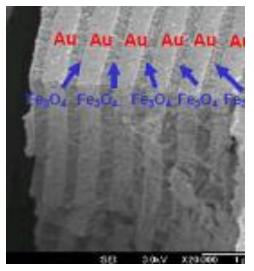
[6] F. Labib, S. Ohhashi, A.P. Tsai, *Philos. Mag.* 99 (2019) 1528

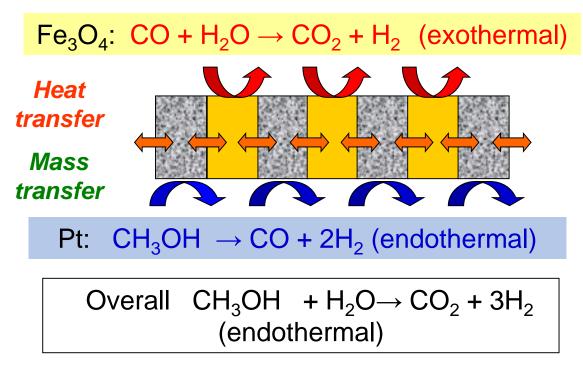

Designing new catalysts through the fusion of metallurgy & catalyst chem.

Aim: to find new (unexpected) routes to efficient catalysts.# Tuning the electronic structure and/or microstructure# New understanding on the generation of active sites

Tuning the electronic structure for catalysis

(Pseudoelement: PdZn ≈ Cu for SRM)



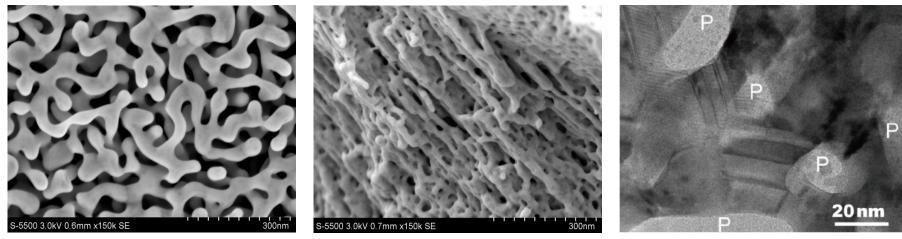

[1] A.P. Tsai, S. Kameoka and Y. Ishii, "PdZn=Cu: Can an intermetallic compound replace an element ?" *J .Physical Soc. Jpn.*, **73** (2004) 3270-3273.

[2] K. Nozawa, N. Endo, S. Kameoka, A.P. Tsai and Y. Ishii, "Catalytic properties dominated by electronic structures in PdZn, NiZn and PtZn intermetallic compounds", *J. Physical Soc., Jpn.*, **80** (2011) 064801.
[3] A.P. Tsai, T. Kimura, Y. Suzuki, S. Kameoka, M. Shimoda and Y. Ishii, "Effect of electronic structures on catalytic properties of CuNi alloy and Pd in MeOH-related reactions", *J. Chem. Phys.*, **138** (2013) 144701.
[4] A.P. Tsai, S. Kameoka, K. Nozawa, M. Shimoda, Y. Ishii, "Intermetallic: A pseudoelement for catalysis" *Account for Chemical Research*, **50** (2017) 2879-2885.

Tuning microstructures through eutectic reaction + leaching

Eutectic microstructure (Lamellar) with porous Au (or Pt) layers

[1] S. Kameoka and A.P. Tsai, "Alternately layered Au/Fe₃O₄ with porous structure – a self-assembled nanoarchitecture for catalysis materials", *Journal of Materials Chemistry*, **20** (2010) 7348-7351.
[2] S. Kameoka, S. Wakabayashi, K. Ohshima and A.P. Tsai, "Composite catalyst with lamellar


 $Fe_3O_4/Pt/Fe_3O_4$ structure and complementary dual catalytic functions", *Catalysis Letters*, **145** (2015) 1457-1463.

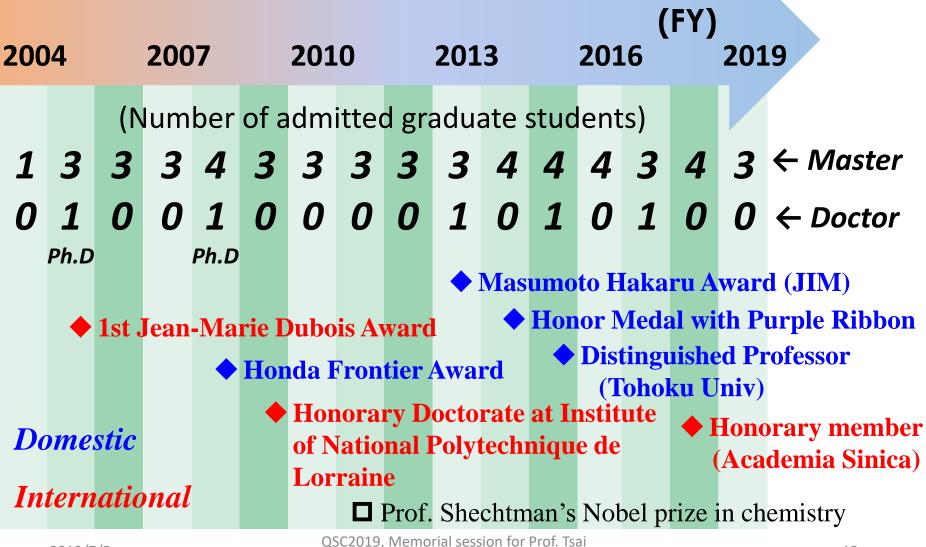
[3] S. Kameoka, S. Wakabayashi, E. Abe and A.P. Tsai, "One-step synthesis of high performance $Pt-Fe_3O_4$ catalyst: Intermetallic $Al_{13}Fe_4$ as a platform and precursor", *Catalysis Letters*, **146** (2016) 1309-1316.

Creation of catalytic active sites at microscopic twin boundaries

PG(Ag₃Au) with cHNO₃

PG(Al₂Au) with NaOHaq.

Twin boundary (TB) defects in the fcc lattice of bulk gold can create close-packed rows of low-coordinated atoms (W-chains; CN= 5 or 6) as active sites on the stepped {211} surfaces of bulk Au.


[1] S. Kameoka, T. Tanabe, K. Miyamoto and A.P. Tsai, "Insights into the dominant factors of porous gold for CO oxidation", *Journal of Chemical Physics*, **144** (2016) 034703.

[2] M. Krajci, S. Kameoka and A.P. Tsai, "Twinning in fcc lattice creates low-coordinated catalytically active sites in porous gold", *Journal of Chemical Physics*, **145** (2016) 084703.

[3] M. Krajci, S. Kameoka and A.P. Tsai, "Understanding the catalytic activity of nanoporous gold: role of twinning in fcc lattice", *Journal of Chemical Physics*, **147** (2017) 044713.

[4] S. Kameoka, M. Krajci and A.P. Tsai, "Highly selective semi-hydrogenation of acetylene over porous gold with twin boundary defects", *Applied Catalysis, A: General*, **569** (2019) 101-109.

Education & honors

2019/7/5

(Sendai, 25 June 2019)

(Sendai, 25 June 2019)