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Effective field theory is a 
model-independent way to 

parameterize small corrections

But not all EFT parameters
can be realized in 
consistent models

Goal: Identify/remove unphysical regions of parameter space
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Goal: Identify/remove unphysical regions of parameter space

For a particular Horndeski EFT of dark energy, 𝜙, coupled to the metric 𝑔&',
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Goal: Identify/remove unphysical regions of parameter space

For a particular Horndeski EFT of dark energy, 𝜙, coupled to the metric 𝑔&',
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Stability of classical oscillators

Gravitational wave speed

Dark energy clustering

Exploring different vacua
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𝑥 𝑡 = %𝑑𝑡′ 𝐺 𝑡 − 𝑡′ 𝐹(𝑡!)Consider a classical oscillator, 𝑥 𝑡

𝐹 𝑡

A Simple Example

position response/
Green’s fn

force



𝜔"# − 𝑖𝛾𝜔 − 𝜔# −
𝑖𝑐$𝜔$

Λ
−
𝑐%𝜔%

Λ#
+⋯

&'

𝑥 𝑡 = %𝑑𝑡′ 𝐺 𝑡 − 𝑡′ 𝐹(𝑡!)

𝐹 = 𝜔"#𝑥 + 𝛾�̇� + �̈� + interactions

Consider a classical oscillator,

𝐺 is found by solving the equations of motion,

⇒ 𝐺 𝜔 = 𝜔"# − 𝑖𝛾𝜔 − 𝜔# +
𝑖𝑐$𝜔$

Λ −
𝑐%𝜔%

Λ# +⋯
&'

𝑥 𝑡

𝐹 𝑡

A Simple Example

position response/
Green’s fn

force

e.g.

…



𝑥 𝑡 = %𝑑𝑡′ 𝐺 𝑡 − 𝑡′ 𝐹(𝑡!)

𝐹 = 𝜔"#𝑥 + 𝛾�̇� + �̈� + interactions

Consider a classical oscillator,

𝐺 is found by solving the equations of motion,

⇒ 𝐺 𝜔 = 𝜔"# − 𝑖𝛾𝜔 − 𝜔# −
𝑖𝑐$𝜔$

Λ −
𝑐%𝜔%

Λ# +⋯
&'

(with characteristic frequency Λ)

(at 𝜔 ≪ Λ)

𝑥 𝑡

𝐹 𝑡

A Simple Example

position response/
Green’s fn

force

e.g.



𝑥 𝑡 = %𝑑𝑡′ 𝐺 𝑡 − 𝑡′ 𝐹(𝑡!)

𝐹 = 𝜔"#𝑥 + 𝛾�̇� + �̈� + interactions

Consider a classical oscillator,

⇒ 𝐺 𝜔 = 𝜔"# − 𝑖𝛾𝜔 − 𝜔# −
𝑖𝑐$𝜔$

Λ −
𝑐%𝜔%

Λ# +⋯
&'

(with characteristic frequency Λ)

But are all parameter
values equally good?

(at 𝜔 ≪ Λ)

Can now fit EFT coefficients
{𝜔,, 𝛾, 𝑐-, 𝑐.} to data.

𝑥 𝑡

𝐹 𝑡

A Simple Example

𝛾
𝜔"

𝑐%

position response/
Green’s fn

force

𝐺 is found by solving the equations of motion,

e.g.



⇒ 𝑥 𝑡 = Re 𝐺 𝜔 𝐹" 𝑒&()*
Suppose we perturb the oscillator with 𝐹 𝑡 = Re 𝐹" 𝑒&()*

The average change in energy is, �̇� = 𝐹 𝑡 �̇� 𝑡 +,- ./.0- = 𝐹"#𝜔 Im 𝐺 𝜔

The system is stable iff Im 𝐺 𝜔 > 0�̇� < 0 signals an instability

A Simple Example

𝛾
𝜔"

𝑐%

But are all parameter
values equally good?

Can now fit EFT coefficients
{𝜔,, 𝛾, 𝑐-, 𝑐.} to data.



⇒ 𝑥 𝑡 = Re 𝐺 𝜔 𝐹" 𝑒&()*
Suppose we perturb the oscillator with 𝐹 𝑡 = Re 𝐹" 𝑒&()*

The average change in energy is, �̇� = 𝐹 𝑡 �̇� 𝑡 +,- ./.0- = 𝐹"#𝜔 Im 𝐺 𝜔

The system is stable iff Im 𝐺 𝜔 > 0�̇� < 0 signals an instability

A Simple Example

𝛾
𝜔"

𝑐%
Stability at low frequencies requires,

Im 𝐺 𝜔 =
𝜔
𝜔,.

𝛾 +
𝑐-𝜔$

Λ +⋯ > 0

⇒ 𝛾 > 0

What about at high frequencies?
Bad

(unstable 
at low 𝜔)



A Simple Example

𝛾
𝜔"

𝑐%
Stability at low frequencies requires,

Im 𝐺 𝜔 =
𝜔
𝜔,.

𝛾 +
𝑐-𝜔$

Λ +⋯ > 0

⇒ 𝛾 > 0

What about at high frequencies?
Bad

(unstable 
at low 𝜔)

We do not know 𝐺(𝜔) at high frequencies… however, since 𝑥(𝑡) depends only on the past,

⇒ 𝐺 𝑡 − 𝑡′ = 0 for 𝑡! > 𝑡 (Causality)

the high and low frequency regimes are related, 

𝑥 𝑡 = %𝑑𝑡′ 𝐺 𝑡 − 𝑡! 𝐹(𝑡!)

#
1%

"

2 𝑑𝜔!𝜔′
𝜔!# − 𝜔# Im 𝐺 𝜔! = 𝐺 𝜔 2

𝜋
/
(

) 𝑑𝜔*𝜔′
𝜔*' − 𝜔' sin 𝜔

*𝑡 𝐺 𝑡 = 𝑒+,- sign 𝑡 𝐺 𝑡 = 𝑒+,-𝐺(𝑡)

Proof:

[Kramers+Kronig 1927], …



A Simple Example

𝛾
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We do not know 𝐺(𝜔) at high frequencies… however, since 𝑥(𝑡) depends only on the past,

⇒ 𝐺 𝑡 − 𝑡′ = 0 for 𝑡! > 𝑡 (Causality)

Bad
(unstable 
at low 𝜔)

⇒
𝜔,$𝑐.
Λ$

+ 1 >
3𝛾$

𝜔,$
−
𝛾.

𝜔,.

the high and low frequency regimes are related, 

𝑥 𝑡 = %𝑑𝑡′ 𝐺 𝑡 − 𝑡! 𝐹(𝑡!)

#
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*𝑡 𝐺 𝑡 = 𝑒+,- sign 𝑡 𝐺 𝑡 = 𝑒+,-𝐺(𝑡)

Proof:

``Positivity’’ bound

𝜔
!"𝑐#Λ " + 1 = 3𝛾 "

𝜔
!" − 𝛾 #

𝜔
!
#

Stability at high frequencies requires,

𝜕/.𝐺 𝜔 ?
/0,

= $
1@

,

2𝑑𝜔3

𝜔34 Im 𝐺 𝜔3 > 0'
%!

[Kramers+Kronig 1927], …



A Simple Example

𝛾
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We do not know 𝐺(𝜔) at high frequencies… however, since 𝑥(𝑡) depends only on the past,

⇒ 𝐺 𝑡 − 𝑡′ = 0 for 𝑡! > 𝑡 (Causality)

Bad
(unstable 
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𝑥 𝑡 = %𝑑𝑡′ 𝐺 𝑡 − 𝑡! 𝐹(𝑡!)

#
1%

"

2 𝑑𝜔!𝜔′
𝜔!# − 𝜔# Im 𝐺 𝜔! = 𝐺 𝜔 2

𝜋
/
(

) 𝑑𝜔*𝜔′
𝜔*' − 𝜔' sin 𝜔

*𝑡 𝐺 𝑡 = 𝑒+,- sign 𝑡 𝐺 𝑡 = 𝑒+,-𝐺(𝑡)

Ugly
(unstable 
at high 𝜔)

Proof:

Good

``Positivity’’ bound
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[Kramers+Kronig 1927], …



Positivity bounds

Now consider a QFT with scalar field operator 𝜙 𝑥 . In response to a source 𝒥(𝑥),

𝜙 𝑥 𝒥 = %𝑑%𝑥′ 𝐺 𝑥 − 𝑥′ 𝒥(𝑥!)

𝐺 𝑝 = 𝑚# − 𝑝# −
𝑐%𝑝%

Λ# +⋯
&'

but this is a weak constraint since often 𝑚 ≪ Λ.

Repeating the same steps,

Causality + Stability at high energies ⇒ 𝜕5%𝐺 𝑝 |56" = ∫7!
2 85"!

5"#
Im 𝐺 𝑝! > 0

⇒ 𝑐% > −Λ#/𝑚#

The EFT expansion at low momentum is,

(from eqn of motion, 𝒥 = 𝑚$𝜙 + 𝜕&𝜕&𝜙 + interactions with characteristic energy Λ)

𝒥(𝑥′) sources 𝜙

Measure 𝜙 at 𝑥

𝐺 𝑥 − 𝑥′



Positivity bounds

Stronger bounds come from the non-linear response function,

= 𝑐" + 𝑐9
𝑠
Λ# + 𝑐*

𝑡
Λ# + 𝑐99

𝑠#

Λ% +⋯

(with characteristic energy Λ)

at low 𝑠, 𝑡 ≪ Λ$

𝜙 𝑥$ 𝜙 𝑥% 𝒥 = 𝐺 𝑥$ − 𝑥% + 𝜙 𝑥$ 𝒥 𝜙 𝑥% 𝒥 +@𝑑.𝑥%3𝑑.𝑥$3 𝐹 𝑥%, 𝑥$, 𝑥%3 , 𝑥$3
𝒥(𝑥%3)𝒥(𝑥$3 )

2

interactions

The amplitude 𝐴 𝑠, 𝑡 is a function of 16 − 4 − 4 − 6 = 2 variables, e.g.
𝑠 = 𝑝% + 𝑝$ $

𝑡 = 𝑝% − 𝑝- $

𝐴 𝑠, 𝑡 =

+ +=

𝐹 𝑝', 𝑝#, 𝑝$, 𝑝% = 𝑖 𝐴 𝑠, 𝑡 𝐺 𝑝' …𝐺 𝑝% 𝛿%(𝑝' + 𝑝# − 𝑝$ − 𝑝%)In momentum space,

momentum conservationexternal legs



Positivity bounds

Before fitting to data, we should ask:   Can the EFT coefficients 𝑐:; really have any values? 

Stability (positive probabilities) ⇒ 2 Im 𝐴 𝑠, 0 > 𝐴 𝑠, 0 # > 0

Suppose the 𝜙 fluctuations were created in the past with momenta 𝑝% and 𝑝$ ,

what is the probability that we measure different momenta at late times?

𝑃:;<<-=-,> = 1 − 𝑃?@A- = 1 − 1 + 𝑖 𝐴 𝑠, 0 # = 2 Im 𝐴 𝑠, 0 − 𝐴 𝑠, 0 #

+
𝑝! 𝑝"

𝑝! 𝑝" 𝑝! 𝑝"

𝑝! 𝑝"



Positivity bounds

'
1%

%7!

2
𝑑𝑠!

1
𝑠! − 𝑠

+
1

𝑠! − 𝑢
Im 𝐴 𝑠′, 𝑡 = 𝐴 𝑠, 𝑡

Causality (response = 0 when 𝑐𝑡% − 𝑐𝑡$ < |𝒙% − 𝒙$|) relates high and low energy,

⇒ 𝜕9#𝐴 𝑠, 𝑡 W96"
*6"

= #
1%

%7!

2 𝑑𝑠!

𝑠!$ Im 𝐴 𝑠′, 0 > 0

Note: At large 𝑠,  Im 𝐴 𝑠, 𝑡 /s' → 0
so integral guaranteed to converge
as long as we take at least two 𝜕.

(𝑢 = 4𝑚' − 𝑠 − 𝑡)

Stability at high energies

⇒ 𝑐99 > 0

Using causality to translate high energy conditions into EFT bounds has recently led to 
a number of new constraints on all 𝜕=:𝜕>;𝐴(𝑠, 𝑡) with 𝑎 ≥ 2,

𝑐99* > −
3
2 𝑐99e.g.

both with and without boost invariance. [Baumann++, 2016], [Grall+SM, 2020], …

[de Rham+SM+Tolley+Zhou, 2017], …

[Adams++ 2006], …



A Cosmological Example

Gravity/dark energy is difficult, but at low energies can expand action in fields and their derivatives.

𝛼B = 8 𝑐C#
𝑋#𝜕D#𝐺%
𝐺%

+ 2 𝑐C# − 1

𝑐C# = 1 −
2𝑋𝜕D𝐺%
𝐺%

&'

ℒEFC = 𝐺% 𝑋 𝑅 + 𝑃 𝑋 + 𝐺%′ 𝑋 ∇G∇H𝜙
# − ∇G∇G𝜙

# +⋯

Assuming diffeomorphism invariance & approximate symmetries 𝜙 → 𝜙 + 𝑐 + 𝑐$𝑥$ and 𝜙 → −𝜙
the leading interactions between 𝑔$% and 𝜙 are given by,

with 𝑋 = − %
$ ∇&𝜙

$

Low-frequency GW speed:

Dark energy clustering:

We will focus on two observables:

⇐ 𝜕D𝐺%

⇐ 𝜕D#𝐺%

[Bellini+Sawicki 2014], …

Roughly, 𝑃 𝑋 determines the background evolution, while 𝐺. 𝑋 controls perturbations.



A Cosmological Example

𝐺.3
$ ≤ 𝐺.𝐺.33𝐺.3 ≥ 0 𝑐( > 1

Focus on theories in which 𝑃(𝑋) has both flat and cosmological vacua,

ℒIJK[𝜙]

𝜙 = 𝜙.+?A+(𝑡) + 𝛿𝜙𝜙 = 0 + 𝛿𝜙

𝜙

𝜙

𝜙

𝜙

𝜙

𝜙

Matter

Matter

Import 

Positivity
%
$𝛼+ < 1 − 𝑐(?$

𝑐(
𝛼+

𝛿𝜙 𝛿𝜙
𝛿𝑔&'



Speed of gravitational waves

𝜙

Matter

𝜙

Matter

𝛿𝑔GH = 𝜕D𝐺% 𝑠# +⋯ Positivity of 𝜕=$𝐴 ⇒ 𝜕@𝐺. > 0

⇒ 𝑐C# > 1

Causality+Stability at high energies⇒

Can constrain this by scattering 𝜙 with any matter field,

The EFT coupling between metric and 𝜙 affects the speed of gravitational waves. 

GWs are 
superluminal

GWs are 
subluminal

[de Rham, SM, Noller 2019]

Stable, causal & local?

𝑐C1

UV

IR ℒ*AB

ℒCD 𝑐( = 𝑐EFGGHI = 1

𝑐( > 𝑐EFGGHI = 1



Speed of gravitational waves

𝜙

Matter

𝜙

Matter

𝛿𝑔GH = 𝜕D𝐺% 𝑠# +⋯

Can constrain this by scattering 𝜙 with any matter field,

The EFT coupling between metric and 𝜙 affects the speed of gravitational waves. 

𝛼* ≤ +,!
-.,!
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Stable, causal & local?

𝑐C1
[SM, Noller 2019]



Dark energy clustering

𝜙 𝜙

𝛿𝑔GH

= − 𝜕@$𝐺. +
𝜕@𝐺. $

𝐺.
𝑠$𝑡 + ⋯

Positivity of 𝜕>𝜕=$𝐴 ⇒ 𝜕@$𝐺. < − J/K0 1

K0

𝜙𝜙

𝜙

𝜙

𝜙

𝜙

+

⇒ %
$𝛼+ < 1 − 𝑐(?$
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[SM, Noller 2019]

Causality+Stability at high energies⇒

𝑐($ − 1
Ω)*

𝛼+/Ω)*

𝜙 self-interactions affect how dark energy clusters on large scales.

Can constrain this by scattering 𝜙’s,

CMB
BAO, RSD
Matter
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Dark energy clustering

[SM, Noller 2019]

𝑐($ − 1
Ω)*

𝛼+/Ω)*
(ii) UV features from IR data.

Two important uses:°1
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(i) IR priors from UV stability + causality,
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Some Caveats

(i) Particular IR dof/symmetries

(iii) 𝜙LMNOM not too large 𝑋 < J/K0
J/
1K0

(iv) Time dependence 𝑐( 𝑡 , 𝛼+(𝑡) ~ ΩPQ(𝑡)

See [Grall+SM 2021] for general EFT 
of spontaneously broken time translations

See [Davis+SM 2021] for large |𝑋|

See [Noller+Nicola 2018], [Kennedy+Lombriser 2020]
for other parametrisations

This plot assumes:
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[SM, Noller 2019]

𝑐($ − 1
Ω)*

𝛼+/Ω)*

CMB
BAO, RSD
Matter

(ii) 𝜙 = 0 vacuum is stable

See [SM+Noller 2022] for different stable vacua


