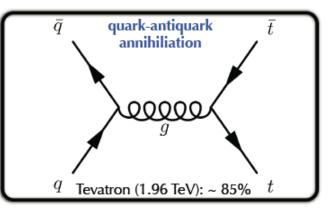
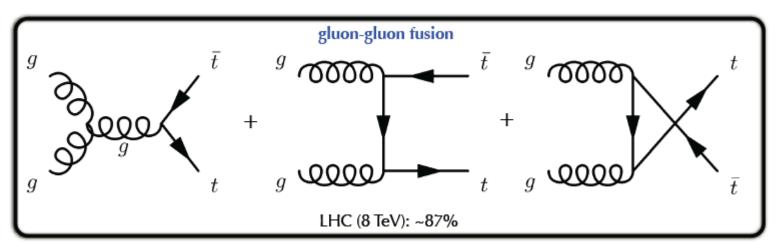


Top Quark Measurements at the ILC

Akimasa Ishikawa (Tohoku University)

Particle Physics and Cosmology after the discovery of Higgs boson

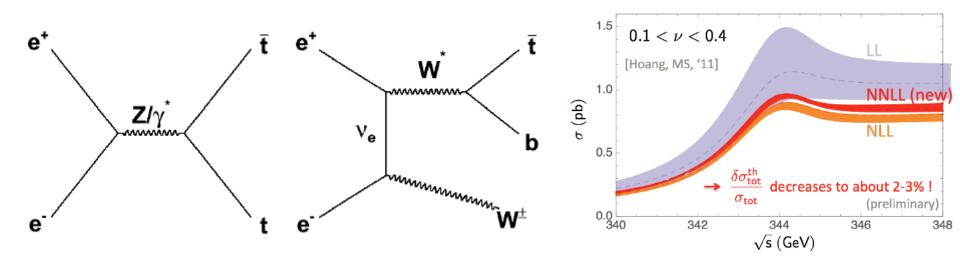

Tohoku Forum for Creativity


Introduction

- Top quark is the heaviest elementary particle.
 - $m_t = 173.1 \pm 0.9 \text{GeV}$
- The mass is close to EW scale $v/v^2 = 174$ GeV ($y_t \sim 1$)
 - Top quark may play an important role in EW symmetry breaking
- Top quark decays before hadronization
 - Lifetime is about 5x10⁻²⁵s
 - Can probe bare quarks

Top Quark at Hadron Colliders

- Top quarks are only studied at hadron colliders.
 - Top quarks are produced from QCD reaction, dominantly quark pairs annihilation at the TeVatron or gluon fusion at the LHC.
 - Initial state energy/polarization is unknown
 - Theoretical uncertainty in QCD is large

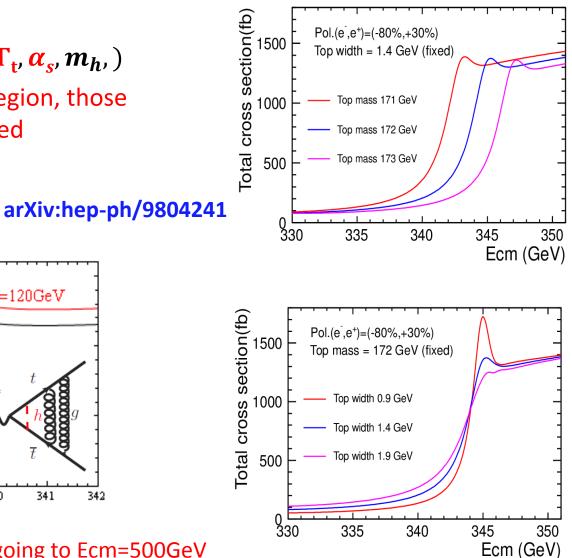


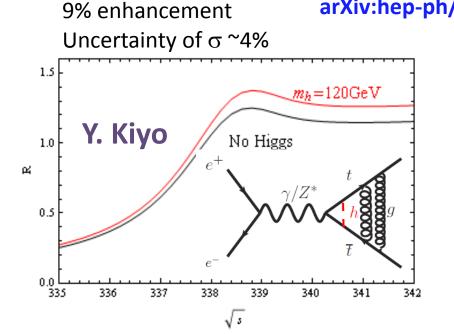
Measurements at Hadron Colliders

- The properties are partially known
 - Mass in pole "like" scheme which is hard to translate to mass in Msbar scheme : $m_t = 173.1 \pm 0.9$ GeV
 - From cross section : $m_t^{MSbar} = 160 + -5 \text{ GeV}$
 - Width with indirect method : Γ t = 2.0 +- 0.5 GeV
 - Spin and charges
 - Coupling to gluon (to axigluon at the TeVatron??)
 - $-|V_{tb}|$

Top quark at the ILC

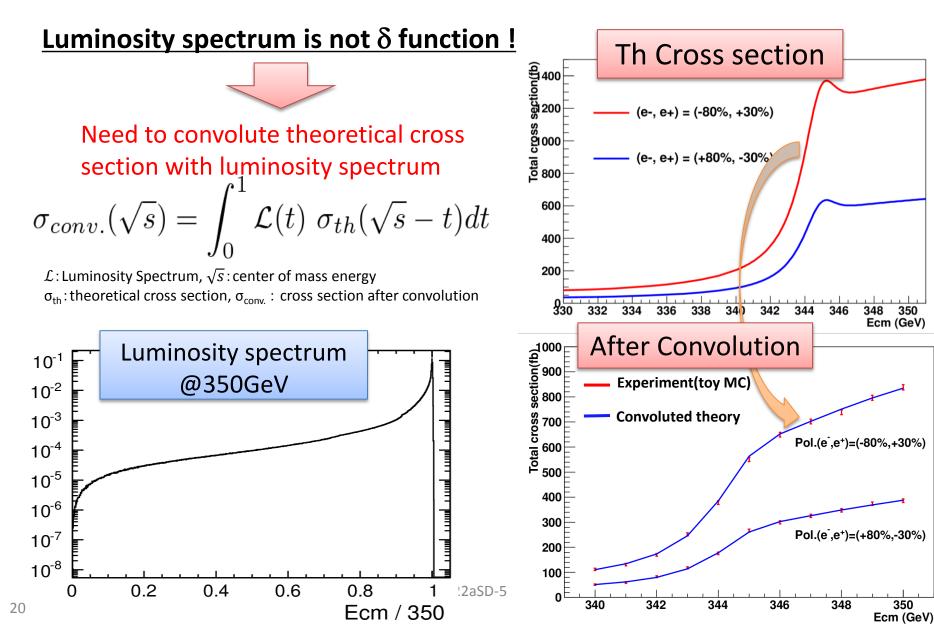
- Top quarks are produced from electroweak reaction
 - Theoretically clean
 - Experimentally easier to reconstruct
- Tunable Beam energy and polarized beam
 - Threshold energy scan is possible
 - Chiral structure can be tested



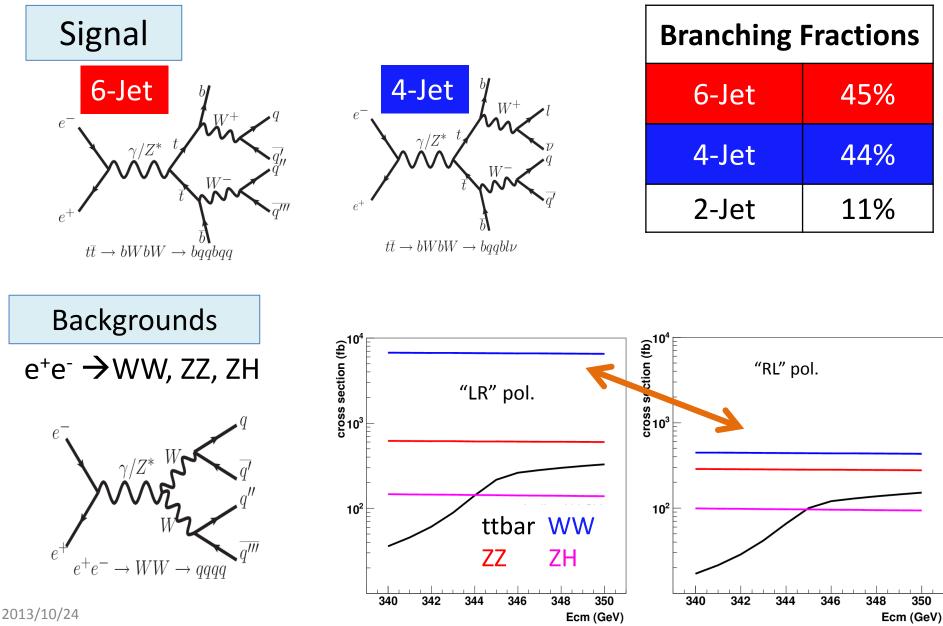

Threshold Scan

 The ttbar cross section is functions of several parameters

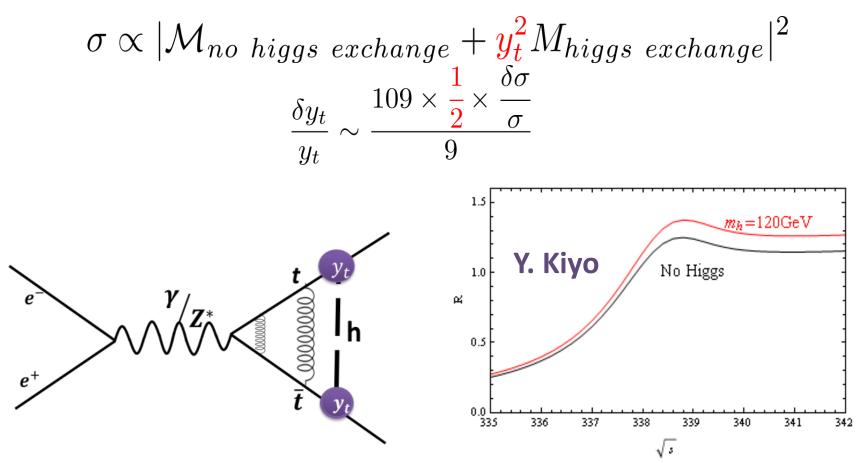
$$\sigma_{tt} = f(\sqrt{s}, m_t(yt), \Gamma_t, \alpha_s, m_h,)$$


• By scanning the threshold region, those parameter can be determined

We can measure top yukawa before going to Ecm=500GeV


Experimental Cross Section

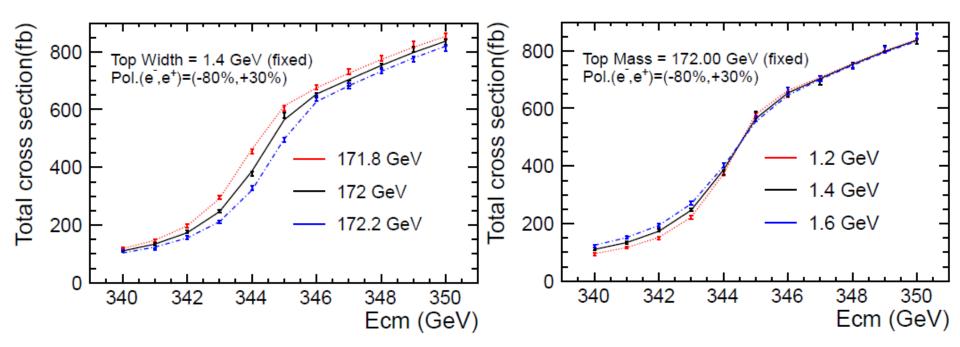
Assumptions for Threshold Scan


- Since the running scenario is not fixed at ttbar threshold, the assumptions of integrated luminosity, energy points and polarizations are different among analyses.
 - Possible polarization configurations, "RL", "LR" and "L": $p(e^{-}, e^{+}) = (+80\%, -30\%), (-80\%, +30\%), (-80\%, 0\%)$
- Case A : 220fb⁻¹
 - Ecm = 340 \sim 350 GeV, every 1GeV, "LR" and "RL", 10fb⁻¹ for each
 - Potential subtraction scheme : $m_t^{PS} = 174 GeV$
- Case B : 100fb⁻¹
 - Ecm = 344~353 GeV, every 1GeV, "L", 10fb⁻¹ for each
 - 1S mass scheme : $m_t^{1S} = 174 GeV$

Signal and Backgrounds

Top Yukawa

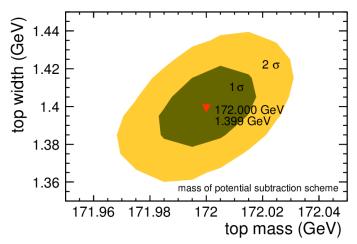
- Enhancement due to Higgs exchange is 9%
- Almost no Ecm dependence



Sensitivity to Top Yukawa : Case A

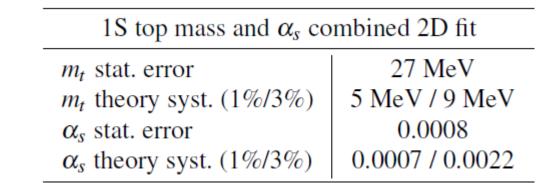
Stat error	6-Jet (Left)	6-Jet (Right)	4-Jet (Left)	4-Jet (Right)	Combined ALL
Cross section	0.8%	1.2%	0.9%	1.3%	
Top yukawa	5.0%	7.2%	5.1%	7.9%	3.0%

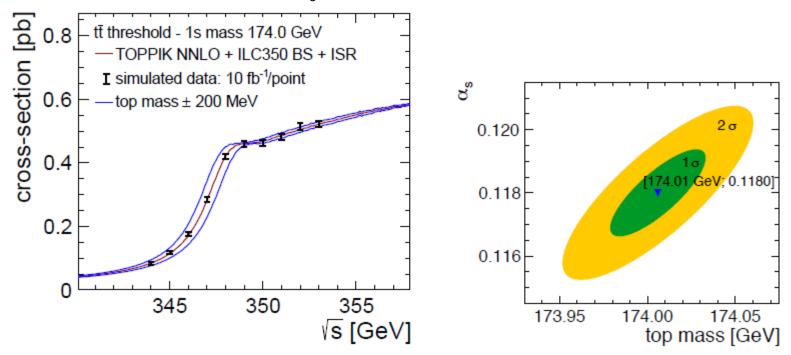
Fits to Mass and Width : Case A


Clear discrimination of 200MeV differences for mass and width

Results on Mass and Width

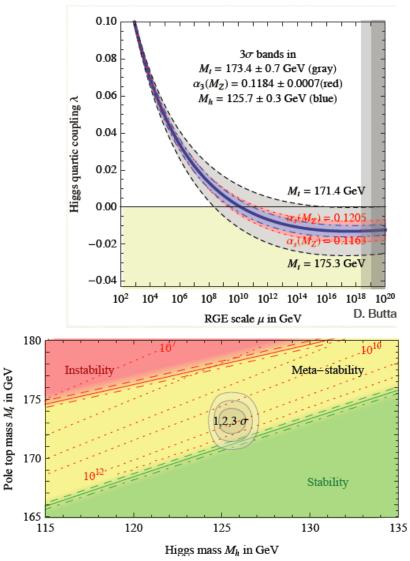
Input s m_t^{PS} = 172 GeV Γ_t = 1.4GeV


	6-Jet		4-Jet		combined	
Stat error (MeV)	δm_t^{PS}	δ Γ _t	δm_t^{PS}	δ Γ _t	δm_t^{PS}	δ Γ _t
Left (110fb ⁻¹)	23	29	24	30		
Right (110fb ⁻¹)	34	42	33	42		
L+R (220fb ⁻¹)	20	24	19	25	14	17


Stat error of top mass and width are 14MeV and 17MeV

22aSD-5

Fits to Top mass and α_s : Case B

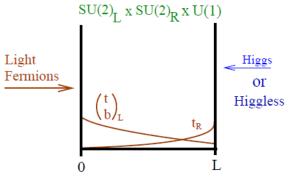


PDG $\alpha_s = 0.1184 \pm 0.0007 (0.6\%)$

Vacuum Stability Current Status

- Vacuum stability can be discussed with top mass and Higgs mass $16\pi^2\beta_\lambda = 12\lambda^2 - 12y_t^4 + \dots$
- Our vacuum might be meta-stable from current world averages of top mass and Higgs mass in the SM!
 – top mass from cross section
- But the uncertainties on masses are large so we can not conclude the fate of our universe.

Vacuum Stability Future


- Systematic error should be considered
- Luminosity spectrum < 100MeV?? Theoretical uncertainty ~ 100MeV — 180 Meta-stability Instability Pole top mass M_t in GeV 175 $1(2, 3 \cdot d)$ 170 Stability 165 115 125 120 130 135
 - Higgs mass M_h in GeV

 $\Delta M_{H} = \pm 37 \text{ MeV}$ $\Delta m_{t}^{\text{pole}} = \pm 17 \text{MeV}$

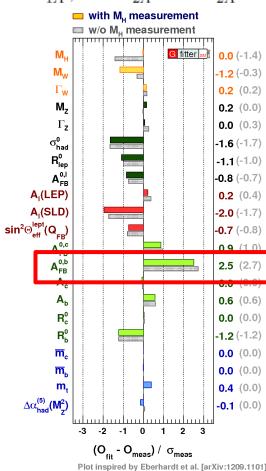
Only Stat error.

Form Factor Measurements

- In Warped Extra Dimension model (bulk RS1), wave functions of heavy particles are close to IR brane while wave functions of light particles are localized at UV brane.
- Heavy top mass is explained by an overlap of right handed top quark and Higgs wave functions in the 4th spatial dimension direction.

- Couplings of left and right handed tops to Z is different
- In some composite models, Higgs and top quark are composite.

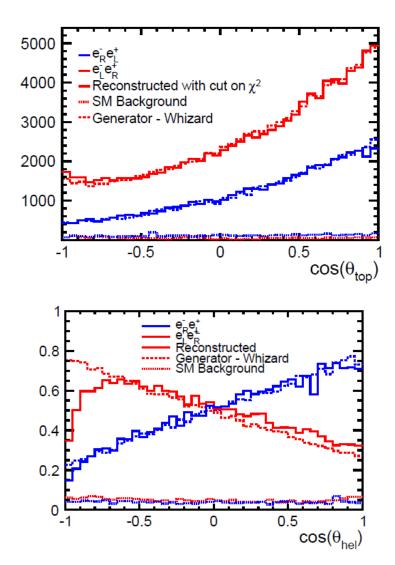
• These can be searched with form factor measurements


Form Factors

$$\begin{split} \Gamma_{\mu}^{ttX}(k^{2},\,q,\,\overline{q}) &= ie \left\{ \gamma_{\mu} \, \left(\widetilde{F}_{1V}^{X}(k^{2}) + \gamma_{5}\widetilde{F}_{1A}^{X}(k^{2}) \right) + \frac{(q-\overline{q})_{\mu}}{2m_{t}} \left(\widetilde{F}_{2V}^{X}(k^{2}) + \gamma_{5}\widetilde{F}_{2A}^{X}(k^{2}) \right) \right\} \\ & X = \gamma, Z \\ & \widetilde{F}_{1V}^{X} = - \left(F_{1V}^{X} + F_{2V}^{X} \right) \,, \qquad \widetilde{F}_{2V}^{X} = F_{2V}^{X} \,, \qquad \widetilde{F}_{1A}^{X} = -F_{1A}^{X} \,, \qquad \widetilde{F}_{2A}^{X} = -iF_{2A}^{X} \,. \end{split}$$

- Only $F_{1V}^{\gamma}(k^2)$, $F_{1V}^Z(k^2)$ and $F_{1A}^Z(k^2)$ are non-zero in the SM

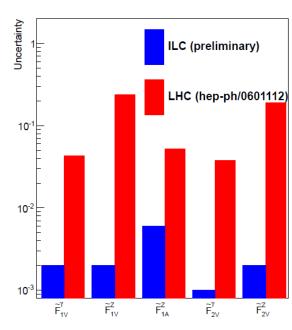
$$F_{1V}^{\gamma,SM} = -\frac{2}{3}, \ F_{1A}^{\gamma,SM} = 0, \ F_{1V}^{Z,SM} = -\frac{1}{4s_w c_w} \left(1 - \frac{8}{3}s_w^2\right), \ F_{1A}^{Z,SM} = \frac{1}{4s_w c_w}$$


- $F_{2V}^{\gamma,Z}(k^2)$ are dipole moment form factors.
- Modified vertex could explain the discrepancy of A_{FB}^{0,b} at LEP
- Interference of γ and Z allows a determination of relative sign.
 - Polarization are very powerfull tool
 - It is difficult at the LHC where form factors are measured from ttZ and tt γ

Angular Analysis

- $\sigma(\text{Ecm, } \theta_{\text{top}}, \theta_{\text{hel}})$
- Top quark charge is measured with lepton (4jet+lepton final states)
- Polar angle of top quark can be measured with very small bias.
 - Forward-Backward Asymmetry
- Helicity angle of top quark is also measured with small bias at +-1 that can be easily corrected.
 - Determination of a fraction of t_L and t_R

$$- \operatorname{Ri} \frac{1}{\Gamma} \frac{d\Gamma}{d \cos \theta_{hel}} = \frac{1 + a_t \cos \theta_{hel}}{2} \operatorname{nriched}$$


CP Conserving Couplings

- We assume Ecm = 500GeV and 500fb⁻¹
 - About 100,000 top pair events.
- From, differential cross section, CP conserving couplings are extracted
- All couplings are measured less than 1% precisions

- Which new physics parameter space is excluded?

Coupling		at at [50]	-+ [4K]
Coupling	LHC [40]	e^+e^- [52]	e^+e^- [45]
	$\mathcal{L} = 300 \text{ fb}^{-1}$	$P_{e^{-}} = \pm 0.8$	$\mathcal{L} = 500 \text{ fb}^{-1}, \ P_{e^{-,+}} = \pm 0.8, \mp 0.3$
$\Delta \widetilde{F}_{1V}^{\gamma}$	$^{+0.043}_{-0.041}$	$^{+0.047}_{-0.047}$, $\mathcal{L} = 200 \ {\rm fb}^{-1}$	$^{+0.002}_{-0.002}$
$\Delta \widetilde{F}^Z_{1V}$	$^{+0.24}_{-0.62}$	$^{+0.012}_{-0.012}$, $\mathcal{L} = 200 \text{ fb}^{-1}$	$^{+0.002}_{-0.002}$
$\Delta \widetilde{F}^Z_{1A}$	$^{+0.052}_{-0.060}$	$^{+0.013}_{-0.013}$, $\mathcal{L} = 100 \ {\rm fb}^{-1}$	$^{+0.006}_{-0.006}$
$\Delta \widetilde{F}_{2V}^{\gamma}$	$^{+0.038}_{-0.035}$	$^{+0.038}_{-0.038}$, $\mathcal{L} = 200 \ {\rm fb}^{-1}$	$^{+0.001}_{-0.001}$
$\Delta \widetilde{F}^Z_{2V}$	$^{+0.27}_{-0.19}$	$^{+0.009}_{-0.009} \;, \mathcal{L} = 200 \; \mathrm{fb}^{-1}$	$^{+0.002}_{-0.002}$

 $\widetilde{F}_{1A}^{\gamma}$ is fixed to zero

CP Violating Couplings

- If 125GeV is CP mixture states, a few % CP Violating couplings are possible at Ecm~370GeV.
- Has not been done at the ILC
 - Roman Poeschel, Yuichiro Kiyo et al started the analysis.

Summary

- From a threshold scan
 - Measure top quark mass with 14MeV stat error which draws a definitive conclusion of vacuum stability in the SM
 - Systematic uncertainty is ~100MeV?
 - And higgs mass less than 50MeV
 - Measure top quark width with 17MeV stat error
 - Allows to search for anomalous couplings
 - Measure top yukawa before going to Ecm=500GeV, ttH production.
- At higher energy,
 - Stat error of CP conserving form factors are estimated which is much better than LHC
 - One question to theorists. Which new physics parameter space is excluded?

backup

CP Violating Couplings at TESLA

• But done at the TESLA

Coupling	LHC [40]	e^+e^- [51]
	$\mathcal{L} = 300 \text{ fb}^{-1}$	$\mathcal{L} = 300 \text{ fb}^{-1}, \ P_{e^{-,+}} = -0.8$
$\Delta {\rm R} e \widetilde{F}^{\gamma}_{2A}$	$^{+0.17}_{-0.17}$	$^{+0.007}_{-0.007}$
$\Delta {\rm R} e \widetilde{F}^Z_{2A}$	$^{+0.35}_{-0.35}$	$^{+0.008}_{-0.008}$
$\Delta {\rm I}m \widetilde{F}^{\gamma}_{2A}$	$^{+0.17}_{-0.17}$	$^{+0.008}_{-0.008}$
$\Delta {\rm I}m\widetilde{F}^Z_{2A}$	$^{+0.035}_{-0.035}$	$^{+0.015}_{-0.015}$