

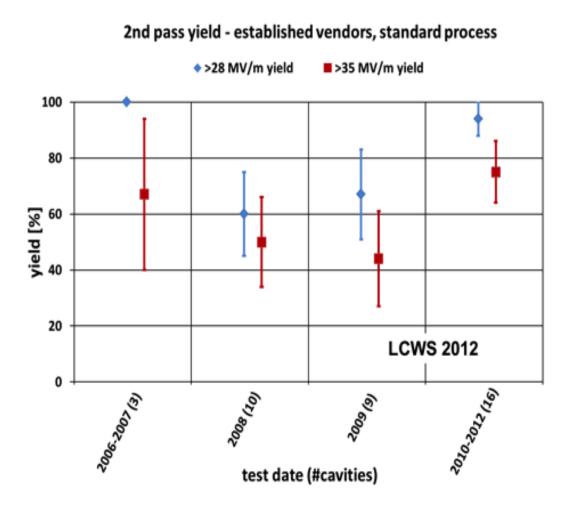

## **Energy Extendibility of ILC**

Kaoru Yokoya (KEK) for the Group D T. Sanuki, B. Barish, H. Yamamoto, H. Hayano, Y. Yamamoto Tohoku Forum of Creativity, 2013.10.23

2013/10/23 Tohoku Forum, Yokoya

## **Accelerator Outline**




## The Issue

- Technical Design Report (TDR) published last year
- Baseline design for center-of-mass energy 500GeV with a brief outline for upgrade to 1TeV
- Total length for 500GeV is ~31km
- Energy reach is determined by the site length and the accelerating gradient
- Question: how high an energy can we reach eventually at Kitakami site?
  - How long is Kitakami site?
  - How high is the ultimate accelerating gradient?
    - 500GeV machine design is based on the average accelerating gradient 31.5MV/m in cavities
  - Don't care about the cost

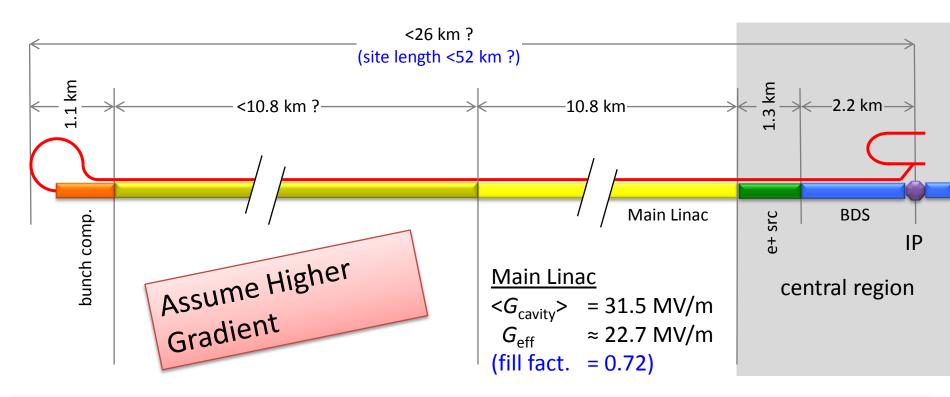
## **ILC Cavity Performance Specification**

- 500GeV Baseline
  - Performance test for Cavity only (so-called vertical test VT)
    - 35 MV/m (28 42 MV/m) (accept +-20% spread)
    - Q0 = 0.8 x 10<sup>10</sup> @35 MV/m
    - Should be passed in twice V.T.s
    - Only EP/BCP as Surface Process
  - Cryomodule Operation with Beam
    - Average Gradient in a Cryomodule
       31.5 MV/m (25 38 MV/m) (accept +-20% spread)
    - Q0 = 1.0 x 10<sup>10</sup> @31.5 MV/m
- 1TeV Extension (assumption in TDR)
  - VT ~ 50MV/m
  - Average gradient in a cryomodule 45MV/m

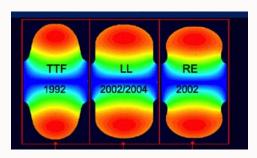
### Progress in SCRF Cavity Gradient (VT)



Production yield: 94 % at > 28 MV/m,


Average gradient: 37.1 MV/m

reached (2012)


A. Yamamoto, May2013, ECFA13

2013/10/23 Tohoku Forum, Yokoya

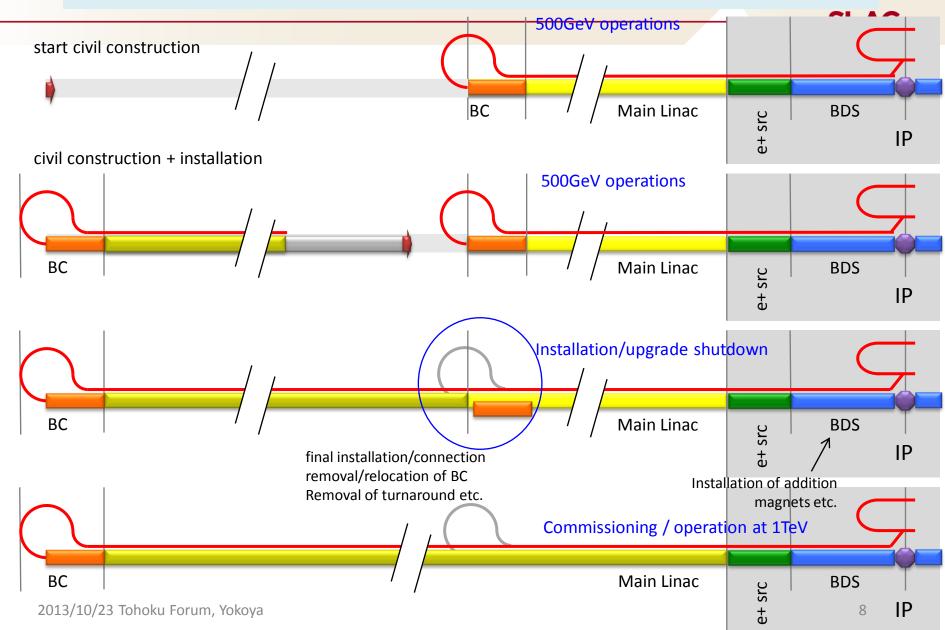
## TeV Upgrade : From 500 to 1000 GeV



 $\frac{\text{Snowmass 2005 baseline}}{\text{recommendation for TeV upgrade:}}$   $G_{\text{cavity}} = 36 \text{ MV/m} \implies 9.6 \text{ km}$   $(\text{VT} \geq 40 \text{ MV/m})$ 



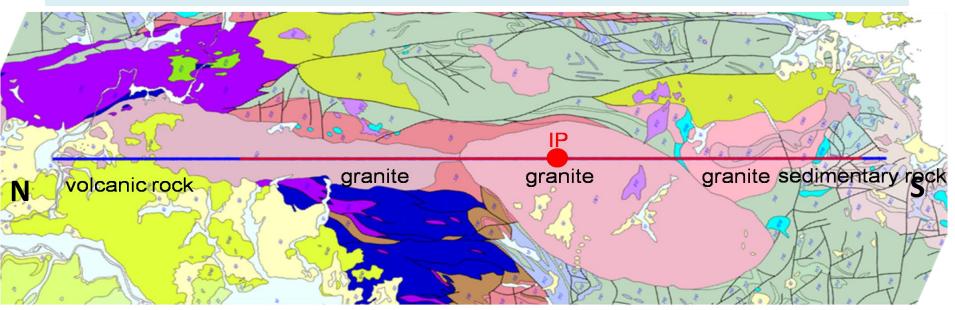
Based on use of low-loss or reentrant cavity shapes


2013/10/23 Tohoku Forum, Yokoya

## TeV Upgrade in TDR

- Scenarios
- A) Extend by present gradient 31.5MV/m
- B) Use first step part as the high energy section, and add higher gradient (45MV/m) section upstream
- C) Replace all by high gradient (45MV/m) cavities

| Table 12.3<br>Comparison of main              |                          |             | 500 GeV TeV Upgrade |                |              |                 |              |
|-----------------------------------------------|--------------------------|-------------|---------------------|----------------|--------------|-----------------|--------------|
| linac upgrade scenarios                       |                          |             | Baseline            | Scenario A     | Scenario B   |                 | Scenario C   |
| (gradient). Approxi-<br>mate cavity numbers   |                          |             |                     |                | upgrade      | base            |              |
| and linac lengths as-<br>sume the same cavity | Energy range<br>Gradient | GeV<br>MV/m | 15–250<br>31.5      | 15–500<br>31.5 | 15–275<br>45 | 275–500<br>31.5 | 15–500<br>45 |
| length and packing<br>fraction (64%) as the   | Num. of cavities         |             | 7400                | 15 280         | 8190         | 7090            | 10700        |
| current baseline linac                        |                          |             |                     |                | total cavit  | ties: 15280     |              |
| design.                                       | Linac length             | km          | 12                  | 25             | 9.5          | 11.5            | 17.5         |
|                                               |                          |             |                     |                | total len    | gth: 21.0       |              |


### TeV upgrade: Construction Scenario (B)



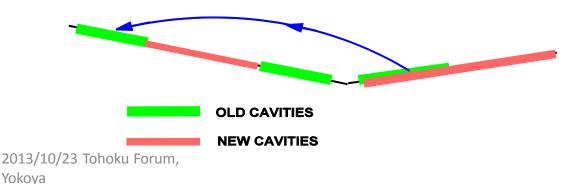

## CM Energy vs. Site Length

- Under the assumption
  - Scenario B (i.e., keep the 500GeV linac as the high energy part)
  - Available total site length L km
  - Operating gradient G MV/m (to be compared with 31.5 in the present design)
  - Assume the same packing factor
- Then, the final center-of-mass energy is Ecm = 500 + (L-31)\*(G/45)\*27.8 (GeV)
  - e.g., L=50km, G=31.5MV/m → 870GeV
     L=50km, G=45MV/m → 1030GeV
     L=67km, G=45MV/m → 1500 GeV
     L=67km, G=100MV/m → 2700 GeV
- This includes the margin ~1% for availability
- But does not take into account the possible increase of the BDS for Ecm>1TeV
  - Present design of BDS accepts 1TeV without increase of length
  - A minor point in increasing BDS length: laser-straight

### Available Site Length at Kitakami






T.Sanuki

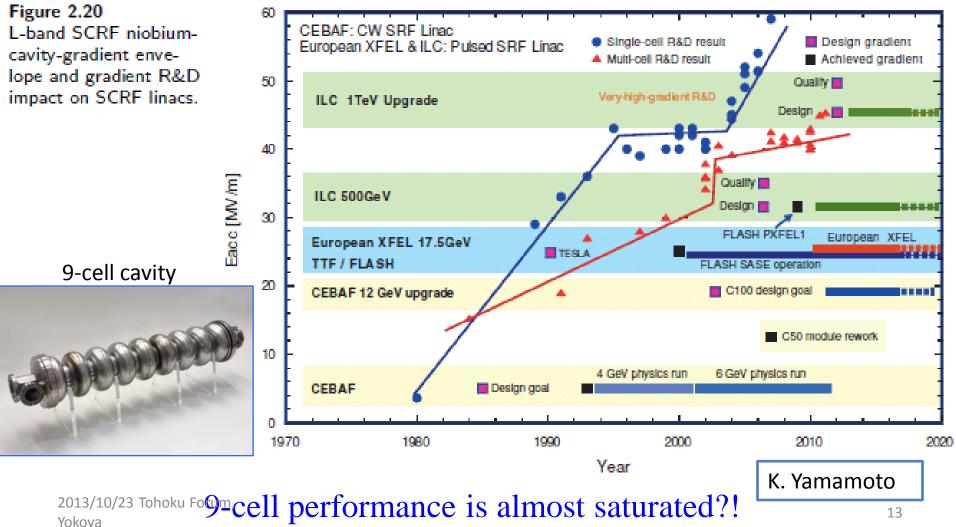
- Can be extended more to the north
- 14.9km + 50.2km + 1.9km = 67km
- 75km may be possible by further extension to the north 10

2013/10/23 Tohoku Forum, Yokoya

## A Local Problem at Kitakami

- Once the first stage machine is built, it is almost impossible to move the IP (interaction point) in later stages because of the crossing angle
- N \_\_\_\_\_\_ S
  - Asymmetric collider may be acceptable
    - Asymmetric accelerator
    - Asymmetric energy
    - Asymmetric energy can be avoided to some extent by moving all the old cavities in the south arm to the north at the time of upgrade

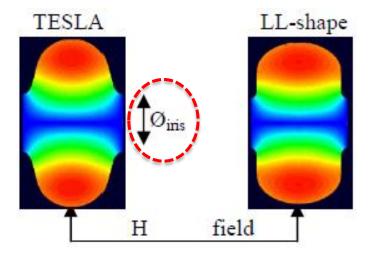





## **High Gradient Cavities**

- Niobium
- Superconducting material other than niobium

## Development of Niobium Cavities Comparison of 1- and 9-cell performance


There is large gap between 1-cell and 9-cell cavity performance!



What approach can we take? According to TDR (Volume 3, Part 1, Page 28)... (1) Cavity Shape Low Loss, Re-Entrant, Low Surface Field (2) Material (niobium) Large Grain, Seam-less (3) Surface Treatment  $\blacktriangleright$  Recently, new idea trying (4) Packing Factor of Cryomodule Exchanging Q-mag to Cavity

K. Yamamoto

## 1 Cavity Shape



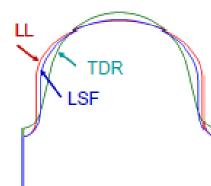





Figure 1: H contour in two shapes of inner cell.

## Reduce the maximum magnetic field on the niobium surface

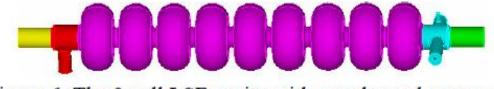



Figure 6: The 9-cell LSF cavity with coupler end-groups.

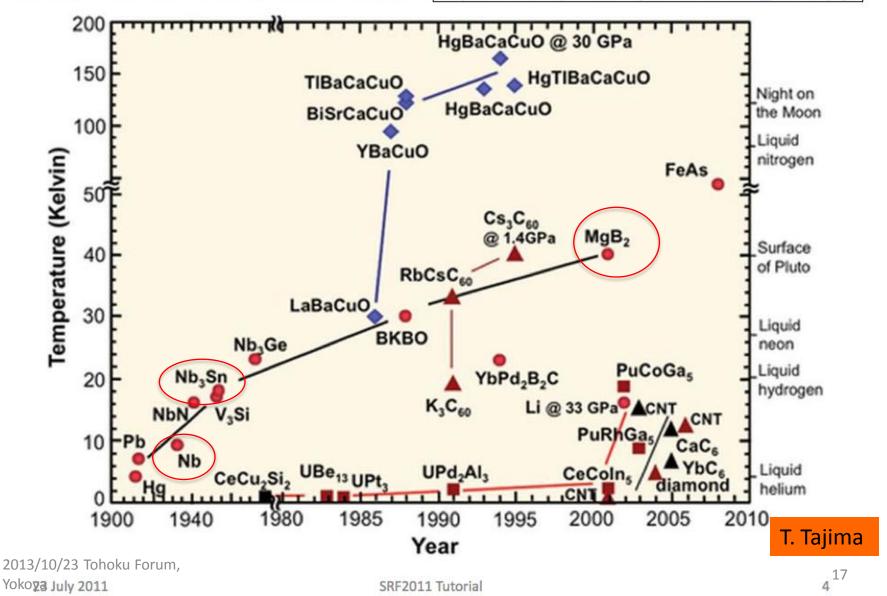
| Table 2.11<br>Comparison of RF pa-<br>rameters of alternate- |                    |            | TESLA | Low-loss/<br>ICHIRO | Re-entrant | Low-surface<br>field |
|--------------------------------------------------------------|--------------------|------------|-------|---------------------|------------|----------------------|
| shape cavities with the                                      | frequency          | GHz        | 1.3   | 1.3                 | 1.3        | 1.3                  |
| baseline                                                     | Aperture           | mm         | 70    | 60                  | 60         | 60                   |
|                                                              | $E_{peak}/E_{acc}$ | _          | 1.98  | 2.36                | 2.28       | 1.98                 |
|                                                              | Hpeak/Eacc         | mT/(MV/m)  | 4.15  | 3.61                | 3.54       | 3.71                 |
|                                                              | Cell-cell coupling | %          | 1.90  | 1.52                | 1.57       | 1.27                 |
|                                                              | G*R/Q              | $\Omega^2$ | 30840 | 37970               | 41208      | 36995                |

2013/10/23 Tohoku Forum, Yokoya

K. Yamamoto






The remarkable merit is higher Q<sub>0</sub> at lower gradient. ↓ lower residual resistance K. Yamamoto

2013/10/23 Tohoku Forum, Yokoya

### **New Superconducting Material**

Discoveries of Superconductors

http://en.wikipedia.org/wiki/File:Sc\_history.gif



# Important factors for the material to be used for SRF cavities

- Low RF surface resistance for high Q<sub>0</sub> to reduce the consumption of liquid helium
- High H<sub>c1</sub> and H<sub>sh</sub> for high gradient (vortices cause RF losses)
- Good thermal conductivity (in the case of bulk material)
- Practically,
  - Should not degrade over time
  - Can be cleaned with high-pressure water rinse
  - Can have a smooth surface

23 July 2011

SRF2011 Tutorial

8

### **Some Candidate Materials**

| Material                   | Nb  | Nb <sub>3</sub> Sn | MgB <sub>2</sub> | NbN  | NbTiN | Mo <sub>3</sub> Re |
|----------------------------|-----|--------------------|------------------|------|-------|--------------------|
| T <sub>c</sub> [K]         | 9.2 | 18.3               | 39               | 16.2 | 17.5  | 15                 |
| $ρ_n$ [μΩ·cm]              | 2   | 20                 | 0.3-5 [2]        | 70   | 35    |                    |
| λ <b>(0) [</b> nm]         | 40  | 85                 | 140              | 200  | 151   | 140                |
| ξ [nm]                     |     |                    |                  |      |       |                    |
| $\kappa = \lambda_L / \xi$ |     |                    |                  |      |       |                    |
| H <sub>c</sub> (0) [mT]    | 200 | 540                | 430              | 230  |       | 430                |
| H <sub>c1</sub> (0) [mT]   | 170 | 50                 | 30               | 20   | 30    | 30                 |
| H <sub>c2</sub> (0) [T]    | 0.4 | 30                 | 3.5              | 15   |       | 3.5                |
| H <sub>sh</sub> (0) [mT]   |     |                    |                  |      |       |                    |
| Ref.                       |     |                    |                  |      |       |                    |

[1] most data are from A-M. Valente-Feliciano, SRF2007 tutorial [2] C. Zhuang et al., SUST 22 (2009) 025002.

23 July 2011

SRF2011 Tutorial

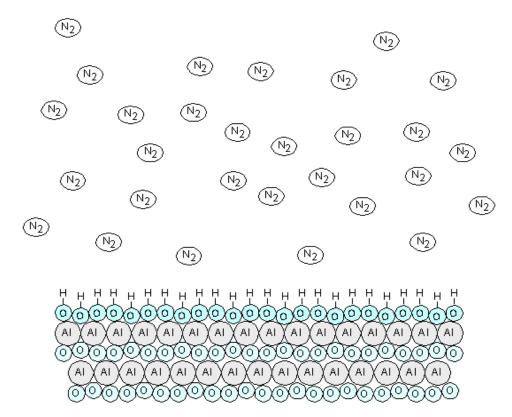

13

#### Good candidates: Nb<sub>3</sub>Sn : tri-niobium tin

MgB<sub>2</sub> : magnesium di-boride

2013/10/23 Tohoku Forum, Yokoya

### Multilayer thin film superconductors concept proposed by Alex Gurevich [1, 2]






## How to make a thin layer on niobium

Atomic layer deposition (ALD)

• A thin film synthesis process based on sequential, self-limiting surface reactions between vapors of chemical precursors and a solid surface to deposit films in an atomic layer-by-layer manner.



### Application of "thin-film on Nb" to ILC?

### Technology of; (1) nm-level Smooth Nb cavity surface,

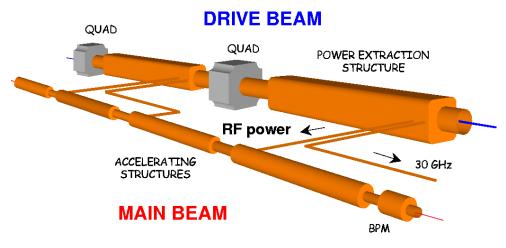
Tumbling, electro-polish, etc.

Hydroforming without welding.

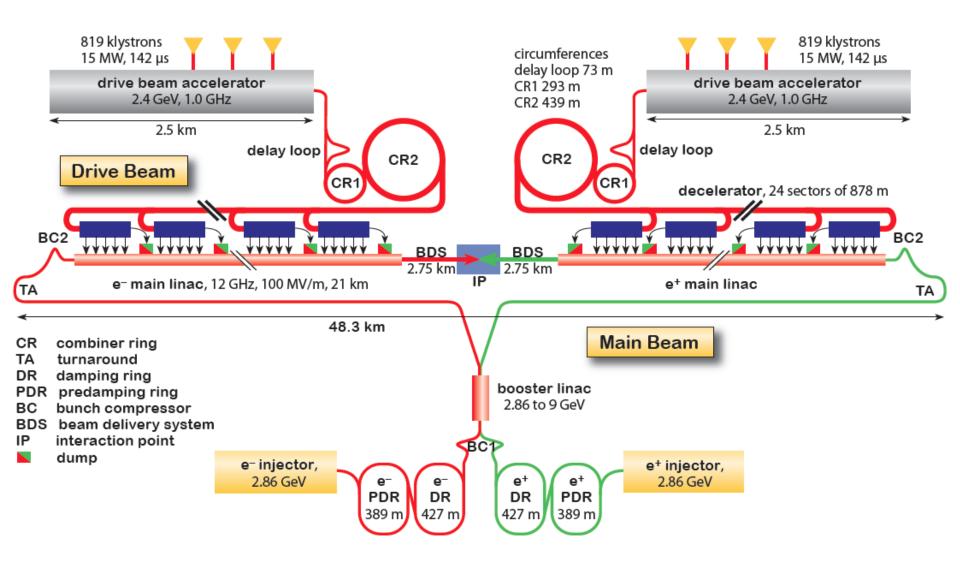
(2) Well controlled thin-film formation on Nb cavity,

Atomic Layer Deposition (ALD)

### will be required.


### Then, we can reach >100MV/m with TESLA cavity shape.

H.Hayano

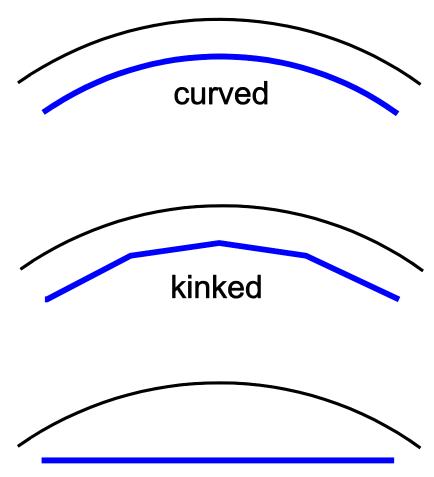

## CLIC (Compact(CERN) Linear Collider)

- CLIC is anther linear collider technology (normalconducting)
- Has been developed under CERN leader ship
- Now in international framework

   Part of LCC (Linear Collider Collaboration)
- Conceptual Design Report (CDR) completed
  - Still premature for construction start
  - But will be ready by the time 500GeV ILC completion
- Can reach 3TeV in a 50km site



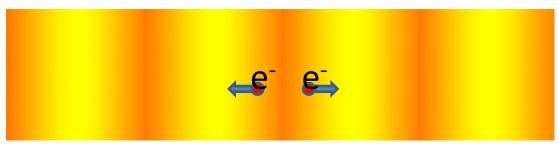
## **CLIC Complex**




### A technical point: Difference of the Tunnels of ILC and CLIC

- Cost saving by reuse of tunnel is ~1.2B\$
  - CLIC-ILC General Issue Group Interim Report 1
  - <u>http://ilcdoc.linearcollider.org/record/31959/files</u>
     <u>/CLIC\_ILC\_Interim-Report\_Final-1.pdf</u>
  - In addition, save 0.25B\$ if reuse Main linac klystron for CLIC driver (but CLIC frequency must be changed 12GHz→11.7GHz)
- Crossing angle (for e+e-)
  - 20mrad for CLIC (3TeV), 14mrad for ILC
  - Are these really necessary?

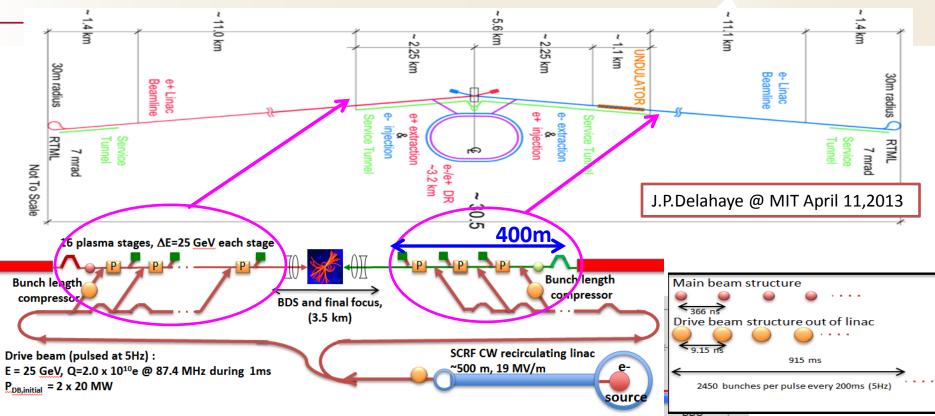
## Laser-straight vs. geoid-following


- CLIC: laser-straight
- ILC: geoid-following
- Does geoid-following allow 3TeV?
- Emittance increase by radiation is tolerable
- The largest issue now is the calibration error of BPMs (beam position monitor)
- This can be solved in 20 years, I believe





## Another Solution: Plasma Accelerator


- Linac in the past has been driven by microwave technology
- Plane wave in vacuum cannot accelerate beams: needs material to make boundary condition
- →Breakdown at high gradient
   binding energy of matter: eV/angstrom = 10GeV/m
- Plasma wave can accelerate electrons (and positrons)
- Need not worry about breakdown with plasma
  - can reach > 10GeV/m



### How to Generate Plasma Wave

- LWFA (Laser Wakefield Accelerator)
  - Use ultra-short laser beam
  - Being developed everywhere in the world
- PWFA (Plasma Wakefield Accelerator)
  - Use particle (normally electron) beam of short bunch
  - Bunch pattern is more flexible than in LWFA (not constrained by the laser technology)
  - R&D works led by SLAC (FACET/FACET2)
- In both cases the driving beam
  - determines the phase velocity of plasma wave, which must be close to the velocity of light
  - must be shorter than the plasma wavelength required
  - can also ionize neutral gas to create plasma
- My personal opinion: PWFA is more suited than LWFA to large scale accelerators like a linear collider

### An alternative ILC upgrade by PWFA



#### One possible scenario could be:

- 1) Build & operate the ILC as presently proposed up to 250 GeV (125 GeV/beam): total extension 21km
- 2) Develop the PFWA technology in the meantime (up to 2025?)
- 3) When ILC upgrade requested by Physics (say up to 1 TeV), decide for ILC or PWFA technology:
- 4) Do not extend the ILC tunnel but remove latest 400m of ILC linac (beam energy reduced by 8 GeV)
- 5) Reuse removed ILC structures for PWFA SC drive beam accelerating linac (25 GeV, 500m@19MV/m)
- 6) Install a bunch length compressor and 16 plasma cells in latest part of each linac in the same tunnel for a 375+8 GeV PWFA beam acceleration (382m)
- 7) Reuse the return loop of the ILC main beam as return loop of the PWFA drive beam

#### ILC upgrade from 250 GeV to 1 TeV by PWFA

| Parameter                    | Unit                                              | ILC         | ILC         | ILC (to 250GeV) + PWFA |  |
|------------------------------|---------------------------------------------------|-------------|-------------|------------------------|--|
|                              |                                                   |             |             |                        |  |
| Energy (cm)                  | GeV                                               | 250         | 1000        | PFWA = 250 to 1000     |  |
| Luminosity (per IP)          | 10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> | 0.75        | 4.9         | 4.9                    |  |
| Peak (1%)Lum(/IP)            | 10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> | 0.65        | 2.2         | 2.2                    |  |
| # IP                         | -                                                 | 1           | 1           | 1                      |  |
| Length                       | km                                                | 21          | 52          | 21                     |  |
| Power (wall plug)            | MW                                                | 128         | 300         | 128+135*1.2=290?       |  |
| Polarisation (e+/e-)         | %                                                 | 80/30       | 80/30       | 80/30                  |  |
| Lin. Acc. grad. (peak/eff)   | MV/m                                              | 31.5/25     | 36/30       | 7600/1000              |  |
| # particles/bunch            | <b>10</b> <sup>10</sup>                           | 2           | 1.74        | 1.74                   |  |
| # bunches/pulse              | -                                                 | 1312        | 2450        | 2450                   |  |
| Bunch interval               | ns                                                | 554         | 366         | 366                    |  |
| Average/peak current         | nA/mA                                             | 21/6        | 22.9/7.6    | 22.9/7.6               |  |
| Pulse repetition rate        | Hz                                                | 5           | 4           | 5                      |  |
| Beam power/beam              | MW                                                | 2.63        | 13.8        | 13.8                   |  |
| Norm Emitt (X/Y)             | 10 <sup>-6</sup> /10 <sup>-9</sup> rad-m          | 10/35       | 10/30       | 10/30                  |  |
| Sx, Sy, Sz at IP             | nm,nm,µm                                          | 729/6.7/300 | 335/2.7/225 | 485/2.7/20             |  |
| Crossing angle               | mrad                                              | 14          | 14          | 14                     |  |
| Av # photons                 | -                                                 | 1.17        | 2.0         | 1.0                    |  |
| $\delta$ b beam-beam         | %                                                 | 0.95        | 10.5        | 16                     |  |
| Upsilon                      | -                                                 | 0.02        | 0.09        | 0.8                    |  |
| 2013/10/23 Tohoku Forum, Yok | J.P.Delahaye                                      | 1,2013      | 30          |                        |  |

## What's Needed for PWFA

#### • Beam quality

- Small energy spread << 1%</li>
- emittance preservation (alignment, instabilities, laser stability, Coulomb scattering)
- High power efficiency from wall-plug to beam
  - − Wall-plug → driving beam
  - driving beam  $\rightarrow$  plasma wave
  - plasma wave  $\rightarrow$  beam (high-beam loading required)
- Staging (BELLA at LBNL--- 2 stage acceleration to 10GeV) (mainly for LWFA)
  - laser phase (Laser-driven)
  - beam optics matching
- Positron acceleration
- Beam-beam interaction
- Very high component reliability
- Low cost per GeV
- Colliders need all these, but other applications need only some of these
  - Advantage of LWFA (PWFA requires big drive linac)
- Application of plasma accelerators would start long before these requirements are established

## Conclusion

 ILC can be certainly extended to ~1TeV by a natural extension of the present technology of niobium cavity

Can be 1.5TeV with full use of 67km site

- Even higher energy might be reached (3TeV?) using a new SC technology such as thin film
- Obviously, quantitative studies are needed including the luminosity estimation, etc.
- CLIC technology allows to reach ~3TeV in the prepared Kitakami site (~50km)
- Plasma accelerator technology may bring about even higher energy (after several tens of years)