Reheating dynamics after inflation

Kazunori Nakayama (University of Tokyo)

Tohoku Forum for Creativity (2013/10/24)

Contents

I. Inflation

2. Reheating : perturbative decay

3. Reheating : dissipative effects

Microwave sky observed by Planck

 10^4 F

Planck, 1303.5062

Combined with high-I measurements

Bestfit ACDM parameters

Parameter	Planck	
	Best fit	68% limits
$\Omega_{ m b}h^2$	0.022068	0.02207 ± 0.00033
$\Omega_{ m c}h^2$	0.12029	0.1196 ± 0.0031
$100\theta_{\rm MC}$	1.04122	1.04132 ± 0.00068
au	0.0925	0.097 ± 0.038
$n_{\rm s}$	0.9624	0.9616 ± 0.0094
$\ln(10^{10}A_s)$	3.098	3.103 ± 0.072

Initial condition of the density perturbationdetermined by inflation $\mathcal{P}_{\zeta}(k) = A_s \left(\frac{k}{k_0}\right)^{n_s - 1}$

Inflation

A.Guth (1981), K.Sato (1981)

 Accelerated expansion of the universe driven by a scalar field (inflaton)

 Solve horizon problem and flatness problem

 Quantum fluctuation of the inflaton gives seed of the density perturbation

Perturbations

Metric Perturbation

 $ds^{2} = -\mathcal{N}^{2}dt^{2} + a^{2}(t)e^{2\zeta(\vec{x})}(\delta_{ij} + h_{ij}(\vec{x}))dx^{i}dx^{j}$

Scalar perturbation

Tensor perturbation (Gravitational wave)

• Power spectrum :

$$\Delta_{\zeta}^{2} = \frac{V_{\text{inf}}}{24\pi^{2}M_{P}^{4}\epsilon} \left(\frac{k}{k_{0}}\right)^{n_{s}-1} \qquad \Delta_{h}^{2} = \frac{2V_{\text{inf}}}{3\pi^{2}M_{P}^{4}} \left(\frac{k}{k_{0}}\right)^{n_{t}}$$
$$n_{s} = 1 - 6\epsilon + 2\eta \qquad \qquad \textbf{B-mode}$$

Planck, 1303.5082

$$n_s = 1 - 6\epsilon + 2\eta$$

$$r \equiv \frac{\Delta_h^2}{\Delta_\zeta^2} = 16\epsilon$$

Contents

I. Inflation

2. Reheating : perturbative decay

3. Reheating : dissipative effects

Importance of reheating

Reheating temperature $T_{\rm R}$ is important since it determines :

- Efficiency of Leptogenesis/Baryogenesis
- Gravitino abundance (Thermal / Nonthermal)
- Abundance of unwanted relics (moduli, axion, axino, ...)
- Precise prediction of spectral index

Inflaton decay

- Inflaton must couple to SM sector directly or indirectly for successful reheating
- Inflaton coupling to SM particles, e.g.,
 - Higgs $W = k\phi H_u H_d$
 - Right-handed neutrino $W = y\phi NN$

Inflaton decay rate :

$$\Gamma(\phi \to NN) \simeq \frac{y^2}{16\pi} m_{\phi}$$

 $(m_{\phi} > m_N = y\langle\phi\rangle)$

$$\rho_r + 4H\rho_r = \Gamma_{\phi}\rho_{\phi}$$
$$H^2 = \frac{1}{3M_P^2} \left(\rho_{\phi} + \rho_r\right)$$

Reheating is completed at $\Gamma_{\phi} \sim H$

Reheating temperature :

$$T_{\rm R} \sim \sqrt{\Gamma_{\phi} M_P}$$

Radiation before the completion of reheating $\Gamma_{\phi} \ll H : \rho_r \sim \rho_{\phi} \frac{\Gamma_{\phi}}{H} \sim T_{\rm R}^2 H M_P$ \longrightarrow $T \sim (T_{\rm R}^2 H M_P)^{1/4}$ • $\begin{cases} T \propto a(t)^{-3/8} & \text{for } T > T_{\mathrm{R}} \\ T \propto a(t)^{-1} & \text{for } T < T_{\mathrm{R}} \end{cases} & \text{if } \rho_{\phi} \propto a(t)^{-3} \end{cases}$

Thermal history imprinted in inflationary GWs !

Seto, Yokoyama (2003), Boyle, Steinhardt (2005), KN, Saito, Suwa, Yokoyama (2008)

Thermal history imprinted in inflationary GWs !

Seto, Yokoyama (2003), Boyle, Steinhardt (2005), KN, Saito, Suwa, Yokoyama (2008)

Contents

I. Inflation

2. Reheating : perturbative decay

3. Reheating : dissipative effects

K.Mukaida, KN, 1208.3399 K.Mukaida, KN, 1212.4985

Reconsider Reheating

- Example: $\mathcal{L} = \lambda \phi \chi \bar{\chi}$
 - Reheating temperature
 - $T_{\rm R} \sim \sqrt{\Gamma_{\phi} M_P} \quad \Gamma_{\phi} \sim \lambda^2 m_{\phi}$
 - However, ...
 - χ obtains time-dependent mass $\sim \lambda \phi(t)$ • χ obtains thermal mass $\sim gT$

What if $m_{\chi}^{\text{eff}} > m_{\phi}$? Does inflaton decay ?

 $V(\phi)$

Alchemical inflation

KN, F.Takahashi, 1206.3191

•
$$W = S(\mu^2 - \lambda \psi^m - g\phi^n)$$

• e.g., $\psi^2 = H_u H_d$
Flat direction: $\mu^2 = \lambda \psi^m + g\phi^n$
Lifted by SUSY breaking: $V_{\text{soft}} = m_{\psi}^2 |\psi|^2 + m_{\phi}^2 |\phi|^2$

Alchemical inflation

KN, F.Takahashi, 1206.3191

- After inflation ψ = 0 is minimum.
 → Coherent oscillation around ψ = 0
 Inflaton automatically turns into Higgs !
- Reheating proceeds via dissipation of Higgs condensate. $\psi_i \sim 10^{15} \text{GeV}$ $m_\psi \sim 10^6 \text{GeV}$

Inflation scale

Figure 3: The contours of $\log_{10}[m_{\chi}/\text{GeV}]$ (left) and $\log_{10}[H_{\text{inf}}/\text{GeV}]$ (right) where we set g = 1, m = 2, n = 4 and N = 50.

Alchemical inflation

KN, F.Takahashi, 1206.3191

(ψ)

 $m_\psi^2 |\psi|^2$

 \mathcal{V}

 Reheating proceeds via dissipation of Higgs condensate.

 $\psi_i \sim 10^{15} \text{GeV}$ $m_\psi \sim 10^6 \text{GeV}$

 $\mathcal{L} \sim y_t \psi Q \bar{t} + \cdots$

Standard perturbative calculation does not work.
 The same is true for most Higgs inflation models.
 How to deal with reheating ?

Two main effects : I. Preheating 2. Thermal dissipation

• Simple (but realistic) model : $\mathcal{L} = \lambda \phi \chi ar{\chi}$

Thermal

bath

 λ

Preheating

Kofman, Linde, Starobinsky (1997)

Preheating

Kofman, Linde, Starobinsky (1997)

Number density of χ (ϕ) after production $n_{\gamma} \sim k_*^3 \sim (\lambda m_{\phi} \tilde{\phi})^{3/2}$ • Produced χ particles decay via gauge/yukawa interaction $\tilde{\phi}$ \longrightarrow Instant preheating Felder, Kofman, Linde (1999) $\Gamma_{\phi} \sim \frac{\lambda^2 m_{\phi}}{4\pi^4 a}$ Effective dissipation rate of ϕ :

K.Mukaida, KN (2012)

Thermal effects

For high-temperature $gT > m_{\phi}$ \longrightarrow Thermal blocking $\phi \searrow \chi \bar{\chi}$ Instead, thermal dissipation comes in. J.Yokoyama (2005), Drewes (2008,2013), • $\lambda \phi \ll T$ χ thermal bath Bastelo-Gil, Berera, Ramos (2010) A_{μ} $\Gamma_{\phi} \sim \lambda^2 \alpha T$ • $\lambda \phi \gg T$ χ decouples. Bodecker (2006), Laine (2008) A_{μ} $\Gamma_{\phi} \sim \frac{\alpha^2 T^3}{\Delta^2}$ A_{μ}

Schematic picture

Numerical results

10⁵

 10^{0}

2-8-8-

K.Mukaida, KN, 1212.4985

 $(m_{\phi}, \lambda, \phi_i) = (1 \text{TeV}, 10^{-5}, 10^{18} \text{GeV})$

K.Mukaida, KN, 1212.4985

Reheating temperature can be much higher than the inflaton mass.

K.Mukaida, KN, 1212.4985 m_{ϕ} [GeV] 10⁹ T_R [GeV] 10⁸ 10¹⁰ 10⁷ 10⁹ 10^{8} 10⁶ 10^{7} 10⁵ 10⁶ 10⁴ 10⁵ **10⁴** 10³ 10² 10⁻⁵ 10⁻³ 10⁻⁶ 10⁻⁷ 10⁻⁴ 10⁻² λ

Summary

- The reheating process may be significantly altered by thermal effects.
- Most significant for low-mass inflaton and large coupling constants. (e.g., Higgs inflation and its variants)
- Thermal effects are important also for : Saxion, Curvaton, Affleck-Dine,

See also : T.Moroi, K.Mukaida, KN, M.Takimoto, 1304.6597 K.Mukaida, KN, M.Takimoto, 1308.4394