サビエルレドンド

（LMU／MPP Munich）

- Invitation

- Axion (and WISPy) dark matter
- Parameter space
- Detecting WISPy DM with photons
- Dish antenna
- Cavities
- Prospects

Describes
extremely well fundamental physics (at low energies)

Describes
 extremely well fundamental physics (at low energies)

 but feels certainly INCOMPLETE
Beyond the SM

... at low energies Answers areawaiting in the
high energy frontier
where more symmetric beautiful theories arise

Energy
... and can imply physics at low energies

Beyond the SM

... at low energies

Energy

Axions!

- Strong CP: Quinn and Peccei solution: new anomalous U(1) symmetry

$$
\mathcal{L}_{\theta}=\frac{\alpha_{s}}{8 \pi} \operatorname{tr}\left\{G_{a}^{\mu \nu} \widetilde{G}_{a \mu \nu}\right\}\left(\theta+\frac{a}{f_{a}}\right) \text { the QCD theta angle is dynamical !! }
$$

- Axions have predictable properties, which depend mostly on f_{a}
(Energy scale at which the $U(1)$ is spontaneously broken)
- Axion properties

$$
\begin{aligned}
& \begin{array}{c}
\frac{\alpha}{8 \pi}\left(F_{\mu \nu} \widetilde{F}^{\mu \nu}\right) c_{a} \\
g_{a \gamma}=c_{a \gamma \gamma} \frac{\alpha}{2 \pi f_{a}}
\end{array}
\end{aligned}
$$

Axion cold dark matter

- THERMAL PRODUCTION $\quad p_{\text {today }} \sim T_{\text {today }} \sim \mathrm{meV}$

- NON-THERMAL
- initial conditions
- decay of cosmic strings, domain walls

$$
\Phi(x)=\rho(x) e^{i \frac{a(x)}{f_{a}}}
$$

$$
\frac{a\left(t_{0}\right)}{f_{a}} \in(-\pi, \pi)
$$

At PQ phase transition

Axion cold dark matter I

Realignment mechanism
(Field space)

$$
\begin{gathered}
\Phi(x)=\rho(x) e^{i \frac{a(x)}{f_{a}}} \\
\frac{\Omega_{a, V R}}{\Omega_{\mathrm{obs}}} \sim\left(\frac{40 \mu \mathrm{eV}}{m_{a}}\right)^{1.184}
\end{gathered}
$$

Cosmic Strings
(Position space)
(T>QCD)

Domain Walls
(T<QCD)

Axion cold dark matter I

Realignment mechanism
(Field space)

$$
\frac{\Omega_{a, V R}}{\Omega_{\mathrm{obs}}} \sim\left(\frac{40 \mu \mathrm{eV}}{m_{a}}\right)^{1.184}
$$

Cosmic Strings
(Position space)
(T>QCD)

$a=\frac{3 \pi}{2}$	$a=\pi$
$a=0$	$a=\frac{\pi}{2}$

Domain Walls

(T<QCD)

Axion cold dark matter II (PQ before inflation)

Realignment mechanism
(Field space)

$$
\frac{\Omega_{a, V R}}{\Omega_{\mathrm{obs}}} \sim\left(\frac{40 \mu \mathrm{eV}}{m_{a}}\right)^{1.184}
$$

Cosmic Strings
(Position space)
(T>QCD)

$a=\frac{3 \pi}{2}$	$a=\pi$
$a=0$	$a=\frac{\pi}{2}$

Size of our universe after inflation fits inside one of these domains

- CSs and DWs are diluted by expansion
- Whole universe has 1 initial value for a

Relic abundance of WISPy Dark matter (realignment)

$\rho_{a, 0} \simeq 1.2 \frac{\mathrm{keV}}{\mathrm{cm}^{3}} \times \sqrt{\frac{m_{\phi}}{\mathrm{eV}}}\left(\frac{\phi_{\text {initial }}}{4.8 \times 10^{11} \mathrm{GeV}}\right)^{2} \mathcal{F}$,
recall $\rho_{\mathrm{CDM}}=1.2 \frac{\mathrm{keV}}{\mathrm{cm}^{3}}$

- Initial amplitude, physics at very high energies
- WISPy DM opens a window to HEP

Weakly interacting slim particles

Axion-like particles (ALPs) 0^{-}

pseudo Goldstone bosons
Global continuous symmetry spontaneously broken at high energy scale f

$\pi^{0} \eta^{\prime}$ MAJORONS

$\eta a^{\text {R-AXION }}$
FAMILONS

DILATONS
 RADION

Sizes and deformations of extra dimensions, gauge couplings

Hidden gauge bosons

Hidden (Dark) Photons, paraphotons

- Extra U(1) factors ubiquitous in string theory
- Hidden sectors required sor SUSY breaking
- Stueckelberg or Higgs masses ...

bounds and prospects

\[

\]

Excluded(?)
 $\Omega_{\mathrm{cdm}} h^{2}>0.11$

Classical axion window

Excluded by experiments and

 stellar evolution(preinflation PQ

(only realignment)

$$
\begin{array}{cccccccccccccccc}
10^{-7} & 10^{-6} & 10^{-5} & 10^{-4} & 10^{-3} & 10^{-2} & 10^{-1} & 1 & 10 & 10^{2} & 10^{3} & 10^{4} & 10^{5} & 10^{6} & 10^{7} \\
& m_{a}[\mathrm{eV}]
\end{array}
$$

bounds and prospects

$v[\mathrm{GHz}]$

General Axion-like particles (ALPs)

- Mass and coupling unrelated

$$
g=\frac{\alpha}{2 \pi f_{a}} \times O(1)
$$

- Scenario 1

$$
f_{a}<H_{I}
$$

(realignment+cosmic strings, DWs..)

General Axion-like particles (ALPs)

- Mass and coupling unrelated

$$
g=\frac{\alpha}{2 \pi f_{a}} \times O(1)
$$

- Scenario 2

$$
f_{a}>H_{I}
$$

(realignment mechanism)

- Isocurvature constraints!!

Experiments to detect axion DM

- Dish antenna

- Cavity experiments

- Light propagation

Emupans B

- Oscillating EDM

Wispy dark matter around

> density
> $\rho_{\mathrm{CDM}} \simeq 0.3 \frac{\mathrm{GeV}}{\mathrm{cm}^{3}}=m_{a} n_{a}$
velocities in the galaxy
$v \lesssim 300 \mathrm{~km} / \mathrm{s} \sim 10^{-3} c$
phase space density $\frac{n_{a}}{\frac{4 \pi p^{3}}{3}} \sim 10^{29}\left(\frac{\mu \mathrm{eV}}{m_{a}}\right)^{4} \xrightarrow{\text { occupation number is HUGE! }}$ behaves classically

Fourier-transform $a(x)$

$$
\omega \simeq m_{a}\left(1+v^{2} / 2+\ldots\right)
$$

- In a magnetic field one photon polarization Q-mixes with the axion

$$
\mathcal{L}_{I}=\frac{g_{a \gamma}}{4} F_{\mu \nu} \widetilde{F}^{\mu \nu} a=-g_{a \gamma} \mathbf{B} \cdot \mathbf{E} a
$$

Not axions, nor photons are propagation eigenstates!

Axion - photon mixing in a magnetic field

- Equations of motion for a plane wave $\binom{\mathbf{A}_{\|}}{a} \exp (-i(\omega t-k z))$.

$$
\left[\left(\omega^{2}-k^{2}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{cc}
0 & -g_{a \gamma}|\mathbf{B}| \omega \\
-g_{a \gamma}|\mathbf{B}| \omega & m_{a}^{2}
\end{array}\right)\right]\binom{\mathbf{A}_{\|}}{a}=\binom{0}{0} .
$$

axion mixes with A-component PARALLEL to the external B-field

- "Dark matter" solution $v=\frac{k}{\omega} \quad ; \quad \omega \simeq m_{a}\left(1+v^{2} / 2+\ldots\right)$

$$
\begin{aligned}
& \left.\binom{\mathbf{A}_{\|}}{a}\right|_{\mathrm{DM}} \propto\left(\sum_{a}\right) \exp (-i(\omega t-k z)) \\
& \quad \text { It has a small E field! } \quad \chi_{a} \sim \frac{\boldsymbol{g}_{\boldsymbol{a} \gamma}\|\mathrm{B}\|}{\boldsymbol{m}_{\boldsymbol{a}}}
\end{aligned}
$$

DM axions in a magnetic field

$B_{\text {ext }}$
kinetic mixing γ mm $\operatorname{mm} \gamma^{\prime} \quad \mathcal{L} \in \frac{1}{2} \chi F^{\mu \nu} F_{\mu \nu}^{\prime}$

$$
\vec{E}^{\prime}=\omega \vec{A}^{\prime} \uparrow \omega \chi \vec{A}^{\prime} \uparrow \overrightarrow{B_{a}}=\frac{\vec{k}, \vec{A}^{\prime}}{\omega}+\vec{E}_{a} \sim \mathcal{O}\left(k \chi A_{a}^{\prime}\right)
$$

hidden photon parameter space

- initial condition not related with mixing
- broader parameter space
- constraints from DM oscillations into photons

Radiation from a magnetised mirror

Radiated photon wave
whose frequency is

$$
E_{\gamma}=-\chi \omega_{a} a_{0} \cos \left(\omega_{\gamma}(t-z)\right) .
$$

$$
\omega_{\gamma}=\omega_{a}=m_{a}\left(1+v^{2} / 2\right)
$$

Radiation from a magnetised mirror

Signal to noise

$\frac{S}{N}=\left(3 \times 10^{-2} \frac{5 \mathrm{~K}}{T_{S}} \frac{\text { Area }}{10 \mathrm{~m}^{2}}\left(\frac{B}{5 \mathrm{~T}} \frac{c_{\gamma}}{2}\right)^{2} \sqrt{\frac{\text { time }}{1 \text { year }} \frac{10^{-6}}{\Delta \omega / \omega} \frac{10 \mu \mathrm{eV}}{m_{a}}}\right.$
10^{-1}
0^{-1}

$$
\begin{aligned}
& \text { - } \begin{array}{l}
\text { A }=10 \mathrm{~m} 2 \\
-\mathrm{B}=5 \mathrm{~T} \\
-\mathrm{T}_{\text {noise }}=5 \mathrm{~K} \\
- \text { Detectors every } 1 / 8 \text { in frequency }
\end{array} \\
& \text { diffraction } \\
& m_{a} \\
& \hline
\end{aligned}
$$

-need more area?
-more B?
-less noise?
-more time?
-up-fluctuation in the DM density?

Detecting the velocity distribution!

First moves in the visible

- Tokyo U. (moving to the MW)

- DESY (Dark matter: a light move aftermath)

axion DM with resonant cavities

- Use two facing mirrors (simplistic resonant cavity in 1D)

axion DM with resonant cavities

$\left.\begin{array}{ll}\text { - same Area } \\ \text { - same detector } & \left.\frac{S}{N}\right|_{\text {cavity }}\end{array} Q \frac{S}{N}\right|_{\text {dish }}$

- quality factor
$Q \sim \frac{1}{\text { number of reflections until attenuation or dephase }} \lesssim 10^{-6}$
- but need to tune the cavity to m_{a} with a precision m_{a} / Q
slow scan over different resonant frequencies

- Axion DM eXperiment ADMX (Washington U.)

Scan much faster!

CARRACKs

- Kyoto U.

7T field, $\mathrm{D} \sim 0.1 \mathrm{~m}$
$m_{a} \sim 10 \mu \mathrm{eV}$
Rydberg atom detection $T_{S} \sim 0.05 \mathrm{~K}$

Scan much faster!

WISPDMX

- DESY and Max Planck for radioastronomy

- Frequencies and Q-factors

Mode	ν $[\mathrm{MHz}]$	Q_{0}	Mode	ν $[\mathrm{MHz}]$	Q_{0}
TM_{010}	199	53360	TM_{014}	579	122500
TM_{011}	295	44830	TM_{015}	707	60950
TM_{012}	433	47450	TM_{016}	765	105070
TM_{013}	524	47710	TM_{017}	832	102230

- No B-field (hidden photons)
- 2-3 T existing in DESY

Concluding

- Axion DM - well motivated
- underrepresented (getting better)
- testable
- key targets not covered
- experiments are sensitive to ALPs and HPs
- New experiment: dish antenna
- a little short for axions (ALPs,WISPs!)
- directional detection
- New understanding of the old experiments
- More experiments needed!, some on the go!
- ADMX-II, HF
- New efforts in EU, stay in tune!

