2013 Oct.24th@Tohoku

Moduli-Induced Axion Problem

Tetsutaro Higaki

(KEK)

1208.3563 and 1304.7987 with K. Nakayama and F. Takahashi

2013 Oct.24th@Tohoku

Moduli-Induced Axion Probe for extra dimensions

Tetsutaro Higaki

(KEK)

1208.3563 and 1304.7987 with K. Nakayama and F. Takahashi

Cosmological test for string models

Key: Moduli problem in reheating

$\Phi \rightarrow aa$

Φ: Moduli/Inflaton a: Axion

Axionic dark radiation exists even for $m_{\oplus} >> 100$ TeV.

Dark radiation

$$\rho_{\text{rad}} = \left[1 + \frac{7}{8} N_{\text{eff}} \left(\frac{4}{11}\right)^{4/3}\right] \frac{\pi^2}{15} T_{\gamma}^4$$
$$N_{\text{eff}} = \Delta N_{\text{eff}} + 3.046$$

 ΔN_{eff} : Dark radiation, N_{eff} : Effective neutrino number, 3.046: The SM value

Effective neutrino number N_{eff}

Observations from Planck (95%):

[Planck collaborations]

$N_{\rm eff} = 3.36^{+0.68}_{-0.64},$	$3.30^{+0.54}_{-0.51},$	$3.62^{+0.50}_{-0.48}$
(CMB)	(CMB+BAO)	(CMB+H ₀)

(CIMB) (CIMR+RAO)

Effective neutrino number N_{eff}

Observations from Planck (95%):
 [Planck of the second se

[Planck collaborations]

 $N_{\text{eff}} = 3.36^{+0.68}_{-0.64}, \quad 3.30^{+0.54}_{-0.51}, \quad 3.62^{+0.50}_{-0.48}$ (CMB) (CMB+BAO) (CMB+H₀)

Dark radiation is hinted, while tension between H_0 measurement and CMB/BAO.

See also [Hamann and Hasenkamp]: $N_{\rm eff} = 3.66 \pm 0.30 \ (1\sigma)$ (CMB+HST+C+BAO+WL) Axions in string theory: Dark radiation candidates

QCD axion: Strong CP and CDM

$$\mathcal{L} \supset \frac{a}{32\pi^2 f_a} \epsilon^{\mu\nu\rho\sigma} G_{\mu\nu} G_{\nu\rho}$$

Ultralight
$$\sim 10^{-6}$$
 eV for $f_a = 10^{12}$ GeV.

Original motivations:

- A solution of strong CP problem: $\theta < 10^{-10}$
- A candidate of CDM

Motivation for string theory

Unified theory including quantum gravity!

Axions in string theory

• Axions via compactifications:

$$a^i = \int_{\Sigma_n^i} C_n$$

C_n: n-form gauge field for strings/branes.

They can be ultralight and very weak

- shift symmetry: $a
 ightarrow a + \delta$;
- solution of CP and/or CDM with $f_a \sim M_{\text{string}}$ or M_{P} .

Moduli

Reheating field:

• String moduli:

$$\Phi^i = \operatorname{Vol}(\Sigma_n^i)$$

Long lifetime: Light + 1/M_{Pl} (if SUSY)

- Other possibilities:
 - Inflaton (also in non-SUSY if coupled to axions)
 - Open string state, e.g., SUSY-breaking fields

Moduli oscillation

The decay = Reheating + dark radiation.

$$\begin{array}{ccc}
\Phi \to a \\
\Phi \to A_{\mu}, & H, \cdots
\end{array}$$

Moduli problems

• Non-SUSY moduli: $m_{\Phi} \leq m_{3/2}$ + light axion Moduli-Induced Axion problem: [Cicoli, Conlon, Quevedo], [TH, Takahashi], [TH, Nakayama, Takahashi].

$$\Delta N_{\text{eff}} \gg 0.1$$
: $\Phi \rightarrow a$.

• SUSY moduli: $m_{\Phi} > m_{3/2}$ [Endo, Hamaguchi, Takahashi], [Nakamura, Yamaguchi] Moduli-induced gravitino problem:

$$\Omega_{DM} \gg 0.1$$
: $\Phi \rightarrow \psi_{3/2} \rightarrow \chi_{DM}$

Moduli-Induced Axion Problem; moduli decay modes

We will use 4D N=1 SUGRA. $(M_{Pl} = 1)$

Axion production via the kinetic term

$$\mathcal{L}_{kin.} = K_{T\bar{T}} (\partial_{\mu} a)^2; \qquad K_T = \partial_T K$$

$$(K_{TT\bar{T}})\Phi(\partial_{\mu}a)^{2} + \cdots$$

Moduli-axions coupling exists in general!

Φ: Moduli; K: invariant under $\delta T = i\alpha$: $T = \Phi + ia; \quad K = K(T + T^{\dagger})$

The decay fractions of Φ

$$\Gamma_a \equiv \Gamma(\Phi \to aa) = \frac{m_{\Phi}^3 K_{TT\bar{T}}^2}{64\pi K_{T\bar{T}}^3}$$

The decay fractions of Φ

$$\Gamma_a \equiv \Gamma(\Phi \to aa) = \frac{m_{\Phi}^3}{64\pi} \frac{K_{TT\bar{T}}^2}{K_{T\bar{T}}^3}$$

$$\Gamma(\Phi \rightarrow radiation) \sim rac{m_{\Phi}^3}{4\pi}.$$

The decay fractions of
$$\Phi$$

$$\Gamma_{a} \equiv \Gamma(\Phi \to aa) = \frac{m_{\Phi}^{3}}{64\pi} \frac{K_{TT\bar{T}}^{2}}{K_{T\bar{T}}^{3}}$$

$$\Gamma(\Phi \to radiation) \sim \frac{m_{\Phi}^{3}}{4\pi}.$$

$$K \supset Z_{GM}H_{u}H_{d}$$

$$W \supset f_{VIS}W^{\alpha}W_{\alpha}$$

$$\Gamma(\Phi \to HH) \simeq \frac{m_{\Phi}^{3}(\partial_{T}Z_{GM})}{8\pi} \frac{|\partial_{T}f_{VIS}|^{2}}{|28\pi}Re(f_{VIS})^{2}K_{T\bar{T}}}.$$

The decay fractions of
$$\Phi$$

$$\Gamma_{a} \equiv \Gamma(\Phi \to aa) = \underbrace{\frac{m_{\Phi}^{3}}{64\pi}}_{G4\pi} \underbrace{K_{TT\bar{T}}^{2}}_{K_{T\bar{T}}^{3}}$$

$$\Gamma(\Phi \to radiation) \sim \frac{m_{\Phi}^{3}}{4\pi}.$$

$$K \supset Z_{GM}H_{u}H_{d}$$

$$W \supset f_{Vis}W^{\alpha}W_{\alpha}$$

$$\Gamma(\Phi \to A_{\mu}A_{\mu}) \simeq N_{g} \underbrace{\frac{m_{\Phi}^{3}}{128\pi}}_{Re(f_{Vis})^{2}K_{T\bar{T}}}^{|\partial_{T}f_{Vis}|^{2}}.$$

The decay fractions of $\boldsymbol{\Phi}$

$$\Gamma_a \equiv \Gamma(\Phi \to aa) = \underbrace{\frac{m_{\Phi}^3}{64\pi}}_{K_{T\bar{T}}\bar{T}}^{K_{T\bar{T}}\bar{T}}$$

 $\therefore
ho_a \sim
ho_{
m radiation} \sim
ho_{
u}$ after moduli decay

Constraint on decay widths of $\boldsymbol{\Phi}$

Two examples: The problem and solution

The SM

[Balasubramanian, Berglund, Conlon, Quevedo]

Swiss-cheese Calabi-Yau

$$K = -3 \log \left[T + T^{\dagger} - \frac{1}{3} \left\{ |H_u|^2 + |H_d|^2 + (zH_uH_d + h.c.) \right\} \right] + \cdots$$
$$W = W_0; \quad f_{\text{vis}} = \text{const.}$$
$$\Phi = \text{Re}(T) : \text{Volume modulus;} \quad a = \text{Im}(T): \text{Axion.}$$

 $\log(T^{3/2}) \sim 2\pi\xi \sim 10$

[Blumenhagen , Conlon, Krippendorf, Moster, Quevedo]

$$m_{3/2} \sim \frac{1}{T^{3/2}}; \ m_{\Phi} \sim \frac{1}{T^{9/4}}; \ m_{\text{soft}} \sim \frac{1}{T^3}$$

 $\sim 10^{11} {
m GeV}; ~\sim 10^7 {
m GeV}; ~\sim 1-10 {
m TeV}.$

 $K = -3 \log \left[T + T^{\dagger} - \frac{1}{3} \left\{ |H_u|^2 + |H_d|^2 + (zH_uH_d + h.c.) \right\} \right] + \cdots$ $W = W_0; \quad f_{\text{Vis}} = \text{const.}$ $\frac{1/T^{3/2}; T \text{ fixed.}}{1/T^{3/2}; T \text{ fixed.}}$ $\Phi = \text{Re}(T) : \text{Volume modulus;} \quad a = \text{Im}(T): \text{Axion.}$

 $\log(T^{3/2}) \sim 2\pi\xi \sim 10$

[Blumenhagen , Conlon, Krippendorf, Moster, Quevedo]

$$m_{3/2} \sim \frac{1}{T^{3/2}}; \ m_{\Phi} \sim \frac{1}{T^{9/4}}; \ m_{\text{soft}} \sim \frac{1}{T^3}$$

 $\sim 10^{11} \text{GeV}; \ \sim 10^7 \text{GeV}; \ \sim 1 - 10 \text{TeV}.$

 $K = -3\log\left[T + T^{\dagger} - \frac{1}{3}\left\{|H_{u}|^{2} + |H_{d}|^{2} + (zH_{u}H_{d} + \text{h.c.})\right\}\right] + \cdots$

 $W = W_0; \quad f_{vis} = const.$

 $\Phi = \text{Re}(T)$: Volume modulus; a = Im(T): Axion.

$$B_a \equiv \operatorname{Br}(\Phi \to 2a) = \frac{1}{2z^2 + 1}.$$

$$\Gamma(\Phi \to 2a) = \frac{1}{48\pi} \frac{m_{\Phi}^3}{M_{P}^2}; \quad \Gamma(\Phi \to HH) = \frac{2z^2}{48\pi} \frac{m_{\Phi}^3}{M_{P}^2}.$$

$$\mathcal{L} = \frac{z}{\sqrt{6}} (\partial^2 \Phi) H_u H_d + \frac{2}{\sqrt{6}} \Phi (\partial a)^2.$$
$$\Phi = \text{Re}(T) : \text{Volume modulus;} \quad a = \text{Im}(T): \text{Axion.}$$

Ζ

Mass and momentum

• $m_a \sim e^{-2\pi T} \sim 10^{-100000} eV$,

• Decoupled from the SM: $f_a \ge M_{Pl}$

• P_a ~0.1 -1 keV (today)

2. Ex-dim with two holes

[Choi, Jeong]

2. Ex-dim with two holes: Stabilization

$$T = nT_1 - T_2$$
: QCD Axion!

[Choi, Jeong]

• KKLT stabilization : $D_{T_0}W \simeq D_{T_1+nT_2}W \simeq \partial_T K \simeq 0.$

$$K_{\text{moduli}} = -2\log(\mathcal{V}); \qquad \mathcal{V} = (T_0 + T_0^{\dagger})^{3/2} - \kappa_1 (T_1 + T_1^{\dagger})^{3/2} - \kappa_2 (T_2 + T_2^{\dagger})^{3/2},$$
$$W_{\text{moduli}} = W_0 + Ae^{-\alpha T_0} + Be^{-\beta (T_1 + nT_2)}; \qquad \alpha = \frac{2\pi}{N}, \quad \beta = \frac{2\pi}{M}.$$

2. Ex-dim with two holes: Stabilization

$$T = nT_1 - T_2$$
: QCD Axion!

[Choi, Jeong]

- KKLT stabilization : $D_{T_0}W \simeq D_{T_1+nT_2}W \simeq \partial_T K \simeq 0.$
- A sequestered uplifting : $m_s \simeq \sqrt{2}m_{3/2}$; $m_{\tilde{a}} \simeq m_{3/2}$.

 $T = s + ia + \theta \tilde{a}$ with $f_a \sim M_{\text{string}} \sim M_{\text{GUT}}$.

$$\begin{split} K_{\text{moduli}} &= -2\log(\mathcal{V}); \qquad \mathcal{V} = (T_0 + T_0^{\dagger})^{3/2} - \kappa_1 (T_1 + T_1^{\dagger})^{3/2} - \kappa_2 (T_2 + T_2^{\dagger})^{3/2}, \\ W_{\text{moduli}} &= W_0 + Ae^{-\alpha T_0} + Be^{-\beta (T_1 + nT_2)}; \qquad \alpha = \frac{2\pi}{N}, \quad \beta = \frac{2\pi}{M}. \end{split}$$

2. Ex-dim with two holes: Stabilization

$$T = nT_1 - T_2$$
: QCD Axion!

[Choi, Jeong]

- KKLT stabilization : $D_{T_0}W \simeq D_{T_1+nT_2}W \simeq \partial_T K \simeq 0.$
- A sequestered uplifting : $m_s \simeq \sqrt{2}m_{3/2}$; $m_{\tilde{a}} \simeq m_{3/2}$.

 $T = s + ia + \theta \tilde{a}$ with $f_a \sim M_{\text{string}} \sim M_{\text{GUT}}$.

- Mirage type soft masses : $m_{
m soft} \sim {m_{
m 3/2}\over 4\pi^2} \sim 1-10{
m TeV}.$

$$\begin{split} K_{\text{moduli}} &= -2\log(\mathcal{V}); \qquad \mathcal{V} = (T_0 + T_0^{\dagger})^{3/2} - \kappa_1 (T_1 + T_1^{\dagger})^{3/2} - \kappa_2 (T_2 + T_2^{\dagger})^{3/2}, \\ W_{\text{moduli}} &= W_0 + Ae^{-\alpha T_0} + Be^{-\beta (T_1 + nT_2)}; \qquad \alpha = \frac{2\pi}{N}, \quad \beta = \frac{2\pi}{M}. \end{split}$$

2. Ex-dim with two holes: Decay

[TH, Nakayama, Takahashi]

Saxion-decay into QCD axions; can be suppressed!

$$\mathcal{L} = K_{TT\bar{T}}s (\partial a)^2;$$
$$K_{TT\bar{T}} \propto (n^3 \kappa_1^2 - \kappa_2^2)$$

$$\Gamma_a \simeq \frac{\left(n^3 \kappa_1{}^2 - \kappa_2{}^2\right)^2}{768 \pi \kappa_2{}^3} \frac{M_S^3}{M_P^2} \quad ;$$

$$m_s\simeq \sqrt{2}m_{3/2}\sim$$
 100TeV;

2. Ex-dim with two holes: Decay

[TH, Nakayama, Takahashi]

Saxion-decay into QCD axions; can be suppressed!

 $m_s\simeq \sqrt{2}m_{3/2}\sim$ 100TeV; N_g = 12 for the MSSM.

Mass and momentum if exists

• $m_a \sim 10^{-10} \, eV$,

• $f_a \sim M_{GUT} \sim 10^{16} \text{ GeV}.$

• P_a ~0.1 -1 keV (today)

2. Ex-dim with two holes: Decay

[TH, Nakayama, Takahashi]

Saxion-decay into QCD axions; can be suppressed!

 $m_s\simeq \sqrt{2}m_{3/2}\sim$ 100TeV; N_g = 12 for the MSSM.

Symmetric Ex-dim: $T_1 \Leftrightarrow T_2$ $\Delta N_{eff} < 0.1$ Calabi-Yau T_1 T_2

Conclusion

Cosmological test for string models

Key: Moduli problem in reheating

$\Phi \rightarrow aa$

Φ: Moduli/Inflaton a: Axion

Axionic dark radiation exists even for $m_{\oplus} >> 100$ TeV.

Discussions on axion mass

Shift symmetry or $U(1)_{PQ}$ can be broken (to Z_N) by

- Flux compactifications/torsional geometry
- Stringy instantons (NOT QCD)
 - Light axion might appear, e.g., when

Adjoint states:

$$h^{1,0}(S), h^{2,0}(S) \neq 0$$
 S: 4-cycle on CY

or

Many chiral states:

 $\operatorname{Index}(\mathcal{D}) \gg 1.$

D: Dirac operator on a D-brane.

Thank you!

Backup

Constraint on axion dark radiation

1306.6518 [TH, Nakayama, Takahashi]

• Axion-photon conversion in the early universe

Axion-photon conversion $\mathcal{L} = -\frac{1}{4}g_a a F_{\mu\nu} \tilde{F}^{\mu\nu} = g_a a \vec{E} \left(\vec{B} \right)$ Axions mix with photons in the presence of magnetic field. a $M_{ij}^2 = \begin{pmatrix} \omega_p^2 & -g_a BE \\ -g_a BE & m_a^2 \end{pmatrix}_a^{\gamma}$

$$\label{eq:phi} \begin{split} \omega_p &= \sqrt{\frac{4\pi\alpha n_e}{m_e}} \simeq 2\times 10^{-14}\,{\rm eV}\,(1+z)^{3/2}X_e^{1/2}~:~{\rm Plasma~frequency}\\ E~:~{\rm Axion~energy} \end{split}$$

Resonant and non-resonant conversion take place. Yanagida and Yoshimura `88, Sikivie `83 The conversion rate depends on B₀.

2012年7日22日日曜日

Intergalactic magnetic field

2012年7日22日日曜日

2012年7日22日日曜日

Radiation production (Main)

• Φ decays into Higgs via Giudice-Masiero-term:

 $K \supset Z_u |H_u|^2 + Z_d |H_d|^2 + \underline{g(T + T^{\dagger}) (H_u H_d + \text{h.c.})}$ $\Gamma(\Phi \to HH) = \frac{m_{\Phi}^3}{8\pi} \frac{g_T^2}{Z_u Z_d K_{T\bar{T}}}$

D decays into gauge fields via gauge coupling:

$$\int d^2\theta f_{\rm Vis} \mathcal{W}^{\alpha} \mathcal{W}_{\alpha} + c.c. \qquad \mathsf{N}_{g} = \mathsf{12} \text{ for the MSSM}$$

$$\Gamma(\Phi \to A_{\mu}A_{\mu}) = N_{g} \frac{m_{\Phi}^{3}}{\mathsf{128}\pi} \frac{|\partial_{T}f_{\rm Vis}|^{2}}{[\mathsf{Re}(f_{\rm Vis})]^{2}K_{T\bar{T}}}$$

Solutions

[TH, Nakayama, Takahashi] See also [Burgess, Cicoli, Quevedo]

- Suppress the Φ-a coupling:
 - Many visible modes/ geometry/ just open string axions
- Make (all closed string) axions massive:
 - U(1)_A stückelberg coupling/ NP effects
- Change the final reheating field:
 - No moduli oscillation/ additional entropy production

Because axions are interesting:

- A solution of strong CP and/or a CDM candidate
- Ubiquitous in the 4D string vacua.

In Large Volume Scenario

Dark matter: Wino for $m_{soft} = O(1-10) TeV$

(With assumed R-parity)

Modulus decay

Modulus decay into Wino DM

 $Br = O(10^{-3})$

Wino DM pair annihilation

$$\Omega_{\chi}h^2 \simeq 0.16 \left(\frac{g_*(T_d)}{80}\right)^{-\frac{1}{2}} \left(\frac{\langle \sigma v \rangle}{3 \times 10^{-8} \,\mathrm{GeV}^{-2}}\right)^{-1} \left(\frac{T_d}{1 \,\mathrm{GeV}}\right)^{-1} \left(\frac{m_{\chi}}{500 \,\mathrm{GeV}}\right)$$

These process hardly depends on the branching fraction (> 10^{-5}).

 $\Omega_{\text{wino}}h^2$ (with $n_{\text{H}} = 1$)

Constraint on Wino-like DM mass

700GeV ~ m_{Wino} < μ ~ z m_{Wino} .

Hisano, Ishiwata, Nagata (2012)