Formulation of effective theories for dark matter direct detection

Natsumi Nagata

Nagoya Univ./Univ. of Tokyo

Tohoku Forum for Creativity 24 October, 2013

Based on [J. Hisano, K. Ishiwata, N. N., 1004. 4090, 1007. 2601, and 1210. 5985] [J. Hisano, K. Ishiwata, N. N., M. Yamanaka, 1012. 5455] and [J. Hisano, K. Ishiwata, N. N., T. Takesako, 1104. 0228]

- 1. Introduction
- 2. The method of Effective theory
- 3. Some results
 - a) Pure bino DM
 - b) Wino/higgsino DM (high-scale SUSY scenario)
 - c) KK photon DM in the MUED model
- 4. Summary

1. Introduction

Introduction Evidence for dark matter (DM)

Scale of galaxy clusters

Introduction Weakly Interacting Massive Particles (WIMPs)

One of the most promising candidates for dark matter is

Weakly Interacting Massive Particles (WIMPs)

- have masses roughly between 10 GeV ~ a few TeV.
- interact only through weak and gravitational interactions.
- Their thermal relic abundance is naturally consistent with the cosmological observations [thermal relic scenario].
- appear in models beyond the Standard Model.

- XENON 100 collaboration gives a stringent constraint on spin-independent WIMP-nucleon scattering cross section. $\sigma_{\rm SI} < 2.0 \times 10^{-45} \ {\rm cm}^2 \quad \text{(for WIMPs of mass 55 GeV)}$
- Ton-scale detectors for direct detection experiments are expected to yield significantly improved sensitivities.

Motivation

To study the nature of dark matter based on direct detection experiments, the precise calculation of

the WIMP-nucleon scattering cross section

is required.

Previous works

- For Majorana DM e.g.) M. Drees and M. Nojiri, Phys. Rev. D 48 (1993) 3483.
- For vector DM

H. C. P. Cheng, J. L. Feng and K. T. Matchev, Phys. Rev. Lett. **89**, 211301 (2002). G. Servant and T. M. P. Tait, New J. Phys. **4**, 99 (2002).

- In these works, some of the leading contributions (especially those of gluon) to the scattering cross sections are not properly taken into account.
- We study the way of evaluating the cross section systematically by using the method of effective field theory

2. The method of effective theory

1. By integrating out heavy particles, we obtain the effective interactions of WIMP DM with quarks and gluons.

Operator Product Expansion (OPE)

$$\mathcal{L}_{\text{eff}} = \sum_{i} C_i(\mu) \mathcal{O}_i(\mu)$$

 $C_i(\mu)$: Wilson coefficients

include short-distant effects

 $O_i(\mu)$: Effective operators

Higer-dimensional operators. Their nucleon matrix elements contain the effects of long-distance.

 μ : factorization scale ($\mu \sim m_z$)

A scale at which a high-energy theory is matched with the effective theory.

1. By integrating out heavy particles, we obtain the effective interactions of WIMP DM with quarks and gluons.

Operator Product Expansion (OPE)

$$\mathcal{L}_{\text{eff}} = \sum_{i} C_i(\mu) \mathcal{O}_i(\mu)$$

 $C_i(\mu)$: Wilson coefficients

include short-distant effects

$O_i(\mu)$: Effective operators

Higer-dimensional operators. Their nucleon matrix elements contain the effects of long-distance.

 μ : factorization scale ($\mu \sim m_z$)

A scale at which a high-energy theory is matched with the effective theory.

1. By integrating out heavy particles, we obtain the effective interactions of WIMP DM with quarks and gluons.

Operator Product Expansion (OPE)

$$\mathcal{L}_{\text{eff}} = \sum_{i} C_i(\mu) \mathcal{O}_i(\mu)$$

 $C_i(\mu)$: Wilson coefficients

include short-distant effects

 $O_i(\mu)$: Effective operators

Higer-dimensional operators. Their nucleon matrix elements contain the effects of long-distance.

 μ : factorization scale ($\mu \sim m_z$)

A scale at which a high-energy theory is matched with the effective theory.

2. Evaluate the nucleon matrix elements of the effective operators (at a certain scale).

When evolving the operators down to the scale, we need to match the effective theories above/below each quark threshold.

3. By using the nucleon matrix elements, we evaluate the scattering cross section of DM with a nucleon

Effective Lagrangian for Majorana DM

$$\mathcal{L}_{q} = d_{q}\bar{\tilde{\chi}}^{0}\gamma^{\mu}\gamma_{5}\tilde{\chi}^{0}\bar{q}\gamma_{\mu}\gamma_{5}q \quad \longleftarrow \quad \text{Spin-dependent (SD)} \\ + f_{q}m_{q}\bar{\tilde{\chi}}^{0}\tilde{\chi}^{0}\bar{q}q \quad + \frac{g_{q}^{(1)}}{M}\bar{\tilde{\chi}}^{0}i\partial^{\mu}\gamma^{\nu}\tilde{\chi}^{0}\mathcal{O}_{\mu\nu}^{q} + \frac{g_{q}^{(2)}}{M^{2}}\bar{\tilde{\chi}}^{0}i\partial^{\mu}i\partial^{\nu}\tilde{\chi}^{0}\mathcal{O}_{\mu\nu}^{q}$$

$$\mathcal{L}_G = f_G \bar{\tilde{\chi}}^0 \tilde{\chi}^0 G^a_{\mu\nu} G^{a\mu\nu} + \frac{g_G^{(1)}}{M} \bar{\tilde{\chi}}^0 i \partial^\mu \gamma^\nu \tilde{\chi}^0 \mathcal{O}^g_{\mu\nu} + \frac{g_G^{(2)}}{M^2} \bar{\tilde{\chi}}^0 i \partial^\mu i \partial^\nu \tilde{\chi}^0 \mathcal{O}^g_{\mu\nu}$$

Spin-independent (SI)

 $\tilde{\chi}^0: \text{DM} \quad m_q: \text{quark mass} \quad M: \text{DM mass}$

Majorana condition

$$\bar{\tilde{\chi}}^0 \gamma^\mu \tilde{\chi}^0 = 0$$
$$\bar{\tilde{\chi}}^0 \sigma^{\mu\nu} \tilde{\chi}^0 = 0$$

$$\frac{\text{Twist-2 operator}}{\mathcal{O}_{\mu\nu}^{q} \equiv \frac{1}{2} \bar{q} i \left(D_{\mu} \gamma_{\nu} + D_{\nu} \gamma_{\mu} - \frac{1}{2} g_{\mu\nu} \not{\!\!\!D} \right) q}$$
$$\mathcal{O}_{\mu\nu}^{g} \equiv G_{\mu}^{a\rho} G_{\rho\nu}^{a} + \frac{1}{4} g_{\mu\nu} G_{\alpha\beta}^{a} G^{a\alpha\beta}$$

Effective Lagrangian for vector DM

$$\mathcal{L}_{q} = \frac{d_{q}}{M} \epsilon_{\mu\nu\rho\sigma} B^{\mu} i \partial^{\nu} B^{\rho} \bar{q} \gamma^{\sigma} \gamma_{5} q \quad \longleftarrow \quad \text{Spin-dependent (SD)}$$
$$+ f_{q} m_{q} B^{\mu} B_{\mu} \bar{q} q \quad + \frac{g_{q}}{M^{2}} B^{\rho} i \partial^{\mu} i \partial^{\nu} B_{\rho} \mathcal{O}^{q}_{\mu\nu}$$

$$\mathcal{L}_G = f_G B^{\mu} B_{\mu} G^a_{\mu\nu} G^{a\mu\nu} + \frac{g_G}{M^2} B^{\rho} i \partial^{\mu} i \partial^{\nu} B_{\rho} \mathcal{O}^g_{\mu\nu}$$

Spin-independent (SI)

 B^{μ} : DM m_q : quark mass M: DM mass

Some conditions

$$(\Box + M^2)B^{\mu} = 0$$

$$\partial_{\mu}B^{\mu} = 0$$

 $B^0 \to 0$ (N.R.)

$$\frac{\text{Twist-2 operator}}{\mathcal{O}_{\mu\nu}^{q} \equiv \frac{1}{2} \bar{q} i \left(D_{\mu} \gamma_{\nu} + D_{\nu} \gamma_{\mu} - \frac{1}{2} g_{\mu\nu} \not{\!\!\!D} \right) q}$$
$$\mathcal{O}_{\mu\nu}^{g} \equiv G_{\mu}^{a\rho} G_{\rho\nu}^{a} + \frac{1}{4} g_{\mu\nu} G_{\alpha\beta}^{a} G^{a\alpha\beta}$$

Nucleon matrix elements Quark (scalar-type)

Nucleon matrix elements of scalar-type quark operators are evaluated by using the QCD lattice simulations.

mass fractions

 $\langle N|m_q \bar{q}q|N
angle/m_N \equiv f_{T_q}$ (m_N : Nucleon mass)

For proton		
f_{Tu}	0.023	
f_{Td}	0.034	
f_{Ts}	0.025	
For neutron		
f_{Tu}	0.019	
f_{Td}	0.041	
f_{Ts}	0.025	

H. Ohki et al. (2008)

Gluon contribution

$$1 - \sum_{q=u,d,s} f_{Tq} \equiv f_{TG}$$

Mass fractions for proton

Remarks.

Strange quark content is much smaller than those evaluated with the chiral perturbation theory.

Nucleon matrix elements Gluon (scalar-type)

Nucleon matrix element of scalar-type gluon operator is evaluated by using the trace anomaly of the energy-momentum tensor.

Trace anomaly of the energy-momentum tensor in QCD $(N_f = 3)$

M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Phys. Lett. B 78 (1978) 443.

Nucleon matrix elements Twist-2 operators

Nucleon matrix elements of twist-2 operators are evaluated by using the parton distribution functions (PDFs).

$$\langle N(p) | \mathcal{O}_{\mu\nu}^{q} | N(p) \rangle = \frac{1}{m_{N}} (p_{\mu} p_{\nu} - \frac{1}{4} m_{N}^{2} \eta_{\mu\nu}) (q(2) + \bar{q}(2))$$

$$\langle N(p) | \mathcal{O}_{\mu\nu}^{g} | N(p) \rangle = \frac{1}{m_{N}} (p_{\mu} p_{\nu} - \frac{1}{4} m_{N}^{2} \eta_{\mu\nu}) G(2)$$

Here, q(2) and G(2) are called the second moments of PDFs, which are defined by

$$q(2) + \bar{q}(2) = \int_0^1 dx \ x \ [q(x) + \bar{q}(x)]$$
$$G(2) = \int_0^1 dx \ x \ g(x)$$

Second moment at $\mu = m_Z$			
G(2)	0.48		
u(2)	0.22	$\bar{u}(2)$	0.034
d(2)	0.11	$\overline{d}(2)$	0.036
s(2)	0.026	$\bar{s}(2)$	0.026
c(2)	0.019	$\bar{c}(2)$	0.019
b(2)	0.012	$\overline{b}(2)$	0.012

J. Pumplin et al., JHEP 0207:012

Effective coupling of Majorana DM with nucleon

The SI coupling of Majorana DM with nucleon is given as

 $\mathcal{L}_{eff} = f_N \bar{\tilde{\chi}} \tilde{\chi} \bar{N} N$

$$f_N/m_N = \sum_{q=u,d,s} f_q f_{Tq} + \sum_{q=u,d,s,c,b} \frac{3}{4} \left(q(2) + \bar{q}(2) \right) \left(g_q^{(1)} + g_q^{(2)} \right) - \frac{8\pi}{9\alpha_s} f_{TG} f_G + \frac{3}{4} G(2) \left(g_G^{(1)} + g_G^{(2)} \right) .$$

The gluon contribution turns out to be comparable to the quark contributions even if it is induced by higher loop diagrams. Effective coupling of Majorana DM with nucleon

The SI coupling of Majorana DM with nucleon is given as

 $\mathcal{L}_{eff} = f_N \bar{\tilde{\chi}} \tilde{\chi} \bar{N} N$

Effective coupling of Majorana DM with nucleon

The SI coupling of Majorana DM with nucleon is given as

 $\mathcal{L}_{eff} = f_N \bar{\tilde{\chi}} \tilde{\chi} \bar{N} N$

The gluon contribution turns out to be comparable to the quark contributions even if it is induced by higher loop diagrams.

SI elastic scattering cross section

By using the effective coupling, we eventually compute scattering cross sections of the DM with a nucleus.

$$\sigma_{\rm SI} = \frac{4}{\pi} \left(\frac{Mm_T}{M + m_T} \right)^2 |n_p f_p + n_n f_n|^2$$

 m_T : the mass of the target nucleus n_p : the number of proton n_n : the number of neutron

In the following discussion, we show the SI cross sections of DM with a proton, as a reference value.

3. Some results

Pure Bino DM

Only the short-distance contribution should be included into the Wilson coefficients.

Pure Bino DM

Each contribution to effective coupling f_p

Bino DM-proton SI cross sections

ref.) M. Drees and M. Nojiri, Phys. Rev. D48 (1993) 3483.

We found O(10)% alternations in the SI cross sections

Due to a lack of matching in the previous calculation...

J. Hisano, K. Ishiwata, and NN, Phys. Rev. D82 (2010) 115007.

High-scale SUSY

High-scale SUSY scenario has a lot of fascinating aspects from a phenomenological point of view.

> 126 GeV Higgs boson can be achieved

(sufficient radiative corrections)

SUSY CP/flavor problems are relaxed

(suppressed by sfermion masses)

Gravitino problem is avoided

(heavy gravitino)

Gauge coupling unification

(sfermions form SU(5) multiplets)

This scenario also accommodates the existence of Dark Matter (DM) . w/ light gauginos

(chiral symmetries)

Mass spectrum

On the assumption of a generic Kahler potential and no singlet field in the SUSY breaking sector

Mass spectrum

On the assumption of a generic Kahler potential and no singlet field in the SUSY breaking sector

Mass spectrum

On the assumption of a generic Kahler potential and no singlet field in the SUSY breaking sector

Effective coupling

$$f_q^H = \frac{g_2^2}{4m_W m_h^2} (Z_{12} - Z_{11} \tan \theta_W) (Z_{13} \cos \beta - Z_{14} \sin \beta)$$

$$(Z_{ij}: \text{Neutralino mixing matrix})$$

$$\Rightarrow f_q^H \simeq \frac{g_2^2(M_2 + \mu \sin 2\beta)}{4m_h^2(M_2^2 - \mu^2)} \quad (|\mu \pm M_2| \gg m_Z)$$

These interactions are not suppressed even if the DM mass is much larger than the W/Z boson mass.

Non-decoupling effects

J. Hisano, S. Matsumoto, M. Nojiri, O. Saito, Phys. Rev. D 71 (2005) 015007.

Gluon contribution

 $\propto G^a_{\mu\nu}G^{a\mu\nu}$

- Neglected in previous calculations
- 2-loop gluon contribution can be comparable to
 1-loop quark contribution
- > non-decoupling

J. Hisano, K. Ishiwata, and NN, Phys. Lett. B 690 (2010) 311.

Wino-like DM Effective coupling with a proton

There is a cancellation among these contributions

Wino-like DM Scattering cross sections with a proton

- Cancellations between tree- and loop-level contributions occur at a certain value of μ
- Loop contribution is dominant in a wide range of parameter region

Wino-like DM Scattering cross sections with a proton

Tree-level contribution interferes constructively to the loop contribution in the case of low $tan\beta$

The cross sections are within a reach of future experiments in a wide range of parameter regions

Results Higgsino-like DM

Minimal dark matter

Electroweak interacting massive particles (EWIMPs) Ibe-san's talk

The neutral component of an $SU(2)_L n$ -tuplet (hypercharge Y) is assumed to be DM in the Universe.

We again find cancellations among the contributions.

J. Hisano, K. Ishiwata, N. Nagata, and T. Takesako, JHEP **1107** (2011) 005.

Vector DM KK photon DM (MUED)

Minimal Universal Extra Dimension (MUED) model

The first KK photon becomes the lightest Kaluza-Klein particle (LKP).

Vector DM KK photon DM (MUED)

- All of the contributions have the same sign (constructive).
- Resultant scattering cross sections are larger than those in previous work by about an order of magnitude.

J. Hisano, K. Ishiwata, NN, and M. Yamanaka, Prog. Theor. Phys. Vol. 126, No. 3 (2011) 435.

Summary

- We evaluate the elastic scattering cross sections of WIMP DM with nucleon based on the method of effective theory.
- The interaction of DM with gluon as well as quarks yields sizable contribution to the cross section, though the gluon contribution is induced at loop level.
- In the wino dark matter scenario we find the cross section is smaller than the previous results by more than an order of magnitude
- The cross section of the first Kaluza-Klein photon dark matter turns out to be larger by up to a factor of ten.

Backup

Results Higgsino LSP

Results

Loop contributions only

The SI cross section is almost independent of the wino mass.

J. Hisano, K. Ishiwata, and N. Nagata, Phys. Lett. B 690 (2010) 311.

Higgs-nucleon coupling

$$\mathcal{L}_{NNh} = -g_{NNh}\bar{N}Nh$$

$$g_{NNh} = \frac{\sqrt{2}}{v} \sum_{q} \langle N|m_{q}\bar{q}q|N \rangle$$

$$= \frac{\sqrt{2}}{v} \left[m_{N}(f_{Tu} + f_{Td} + f_{Ts}) - \frac{\alpha_{s}}{4\pi} \langle N|G^{a}_{\mu\nu}G^{a\mu\nu}|N \rangle \right]$$

$$= \frac{\sqrt{2}}{v} m_{N} \left[\frac{2}{9} + \frac{7}{9}(f_{Tu} + f_{Td} + f_{Ts}) \right]$$

Large mass fractions (f_Tq \rightarrow large)

Higgs-nucleon couplings are enhanced

Input parameters

$$\sigma_{\pi N} = \frac{m_u + m_d}{2} \langle p | \bar{u}u + \bar{d}d | p \rangle$$

$$y = \frac{2\langle p|\bar{s}s|p\rangle}{\langle p|\bar{u}u + \bar{d}d|p\rangle}$$

$$\xi = \frac{\langle p | \bar{u}u - \bar{d}d | p \rangle}{\langle p | \bar{u}u + \bar{d}d | p \rangle}$$
$$\xi = 0.135 \pm 0.035$$

H. Y. Cheng (1989)

Lattice results (ours)

 $\sigma_{\pi N} = 53 \pm 2(\text{stat})^{+21}_{-7}(\text{syst}) \text{ MeV}$

 $y = 0.030 \pm 0.016(\text{stat})^{+0.006}_{-0.008}(\text{syst})$

Chiral perturbation (traditional)

$$\sigma_{\pi N} = 64 \pm 7 \text{ MeV}$$

M. M. Pavan et al. (2002)

 $y = 0.44 \pm 0.13$

B. Borasoy and U. G. Meissner (1997)

H. Ohki et al. (2008)