
April 22, 2015

The Cellular Automaton Interpretation
of

Quantum Mechanics

First Principles

Gerard ’t Hooft

1 / 27



1. Operators: Beables, Changeables, Superimposables

2. The finite automaton and the cellular automaton

3. The CA Interpretation

a. The ontological basis

b. Templates

4. Classical states

a. Measurements

b. Born’s rule

c. Collapse of the wave function

d. Schrödinger’s cat

5. Quantum operators

a. The Earth - Mars exchange operator

6. Bell’s theorem

a. The mouse droppings function

b. Free will. Superdeterminism. Ontology conservation law.

c. Conspiracy

7. Gravity, Hierarchy

2 / 27



The harmonic oscillator.

ϕ↔
Unitary

transformation

↔
Continuum

limit

(Take the first N energy levels, and

make finite Fourier transformation)

Quantum Oscillator ↔ Classical periodic system
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In the harmonic oscillator,

x(t) and p(t) are QM operators, or observables

ϕ(t) is a very special type of observable operator called beable:

Beables are operators Bi (t) with the property that, at all t, t ′ :

[Bi (t), Bj(t ′)] = 0 .

In many models, one can find such a set of beable operators.

example:
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Massless, chiral, non interacting neutrinos are deterministic:

Second-quantised theory: H = −i ψ† σi∂i ψ

First quantised theory: H = σipi

d
dtO(t) = i [O(t), H]

Beables {Oop
i } = {p̂, s, r} :

p̂ ≡ ±~p/|p| , s ≡ p̂ · ~σ , r ≡ 1
2 (p̂ · ~x + ~x · p̂) .

|p̂| = 1 , s = ±1 , ∞ < r <∞

d
dt p̂ = 0 , d

dt = 0 , d
dt r = s

These beables form a complete set
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θ

ϕ
p

r

s

−s
The neutrino sheet.
Beables: {p̂, s, r}

The eigenstates of
these operators span
the entire Hilbert
space.

Introducing operators
in this basis, one can
reconstruct the usual
operators ~x , ~p , σi

6 / 27



Interesting mathematical physics:

xi = p̂i (r − i

pr
) + εijk p̂j Lont

k /pr + (1)

1

2pr

(
−ϕi s1 + θi s2 +

p̂3√
1− P̂2

3

ϕi s3

)
θi and ϕi are beables, functions of q̂ .

Lont
k are generators of rotations of the sheet,

s3 = s , s1 and s2 are spin flip operators.

The Hamiltonian of the first-quantised theory has no ground state,
but, just as in Dirac’s theory, the second quantised theory does
have a ground state
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The (finite) Automaton

Consider a system that can be in a very large number, N, of
different states, named (0), (1), (2), · · · , (N − 1). Suppose it
obeys a deterministic evolution law:
over a fundamental unit time step δt the states are permuted
according to a given element P of the permutation group PN .

Now consider the representation of this permutator in vector
space:

P =


0 0 0 · · · 1 0
1 0
0 1
0
...

. . .

 write as
U(δt) = e−iA

A = H δt

Possible solution (except for ground state):

Hδt = i log U = π +
∞∑

n=1

1

in δt

(
U(n δt)− U(−n δt)

)
.

8 / 27



The cellular automaton

A

B

A0

A1

B0 B0

B1

B2
A2 A2

3

2

1

0

t

4321x = 0

U = e−iH = e−iA e−iB ; A =
∑

x A(x) , B =
∑

x B(x)

where [A(x), A(x ′)] = 0 , [B(x), B(x ′)] = 0 ; [A(x), B(x ′)] 6= 0
only if x and x ′ are neighbors. Baker Campbell Hausdorff :

H = A + B − 1
2 i [A,B]− 1

12 ([A, [A,B]] + [[A,B],B]) + · · ·.
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CAI

The Cellular Automaton Interpretation of Quantum Mechanics

If the Hamiltonian of the world happens to be that of an
automaton, we can identify observables called Beables.

beables Bi (t) are ordinary quantum operators that happen to obey
[Bi (t), Bj(t ′)] = 0.

The eigenstates of Bi (t) at a given time t form a basis, called the
ontological (ontic) basis.

In a given quantum theory, it’s not known how to construct an
ontic basis.

But one can come very close . . .

The CAI assumes that it exists. Its ontic states can be constructed
from the ordinary quantum states.

If the beables can be constructed more or less locally from the
known states, then we have a classical, “hidden variable theory”.
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The use of Templates
Hydrogen atom, plane waves of in- or out-particles, etc.

templates

beables
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The states we normally use to do quantum mechanics are called
template states. They form a basis of the kind normally used.
This is a unitary transformation. Templates are quantum
superpositions of ontic states and vice versa.

They all obey Schrödinger’s equation!

In a quantum calculation, we may assume the intial state to be an
ontic state, |ψ〉ont. This state will be some superposition of
template states |k〉template:

|ψ〉ont =
∑
k

αk |k〉template (1)

In practice, we use some given template state of our choice. It will
be related to the ontic states by

|k〉template =
∑
n

λn|n〉ont , (2)
where

|λn|2 are the probabilities that we actually have ontic state |n〉ont.
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Classical states

How are the classical states related to the ontic states?

Imagine a planet. The interior is very different from the local
vacuum state. Vacuum state has vacuum fluctuations.

Take 1 mm3 of matter inside the planet. Using statistics, looking
at the ontic states, we may establish, with some probability, that
the fluctuations are different from vacuum.

Combining the statistics of billions of small regions inside the
planet, we can establish with certainty that there is a planet, by
looking at the ontic state.

But what holds for a planet should then be true for all classical
configurations, hence:

All classical states are ontological states!

Classical states do not superimpose.
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Measurements

Paraphrase a simple “experiment”:
First, make the initial state. We take a template for that

(such as plane in-going waves). Remember:

|k〉template =
∑
n

λn|n〉ont , (2)

Here, Pn = |λn|2. λn are conserved in time.
Compute the final state, using Schrödinger equ. or Scattering
matrix. The final state template is associated to some definite
classical state. Compute

classical
template〈`|k〉template =

∑
k

λn
classical〈`|n〉ont (3)

Ontic States evolve into Ontic States, and the classical states are
ontological → 〈`|n〉ont = δkn. Therefore:

Pn = |λn|2 are the Born probabilities.
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The Born probabilities coincide with the probabilistic distributions
reflecting the unknown details of the initial states.

And that’s exactly how probabilities arise in an “ordinary” classical
deterministic theory.

Ontological states form an orthonormal set: superpositions of
ontological states are never ontological states themselves.
The universe is in an ontological state.
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Collapse of the Wave function

When we use a template, we find the final state to be

α1|k1〉+ α2|k2〉+ · · ·
According to “Copenhagen”, P1 = |α1|2, P2 = |α2|2 , · · ·
Why is the final state only one of these states? Why are Pi

probabilities?

The CAI gives the answer: |k1〉 is a possible ontic final state,

and so is k2〉, but α1|k1〉+ α2|k2〉 is not an ontic state.
That’s why it never occurs in the real world.
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Schrödinger’s cat is ontic when it is dead, also when it is alive,
but not when it is in a superposition.

From:
Mr. Kent’s
Chemistry
Page
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How do quantum operators arise in a CA (Cellular Automaton)?

The planetary system as prototype of classical dynamical
models. Planets are in “states” |{~xi , ~vi}〉, described by their
positions ~xi and velocities ~vi .

The evolution laws is “deterministic” by construction. But we can
define operators just as in QM :

The Earth - Mars exchange operator, XEM puts Mars
where Earth is and Earth where Mars is, while also exchanging the
velocity vectors. Leave the Moon and other planets where they are.

X 2
EM = 1 → XEM = ±1.

Can we measure XEM? Is it +1 or −1? How does XEM evolve?

Counterfactual reality : you can’t measure Earth’s and Mars’
positions and XEM at the same time.
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Why it is all wrong: Bell’s theorem

x

tQP

SQA QB

`_

¡

cc ba

t = t
0

t = t
1

t = t
2

t = t
3

t = t
4

BobAlice

In the Bell experiment, at t = t0, one must demand that those
degrees of freedom that later force Alice and Bob to make their
decisions, and the source that emits two entangled particles,

need to have 3 - body correlations of the form

(the Mousedropping Function)
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But Alice and Bob have free will. How can their actions be
correlated with what the decaying atom did, at time t = t2 � t3?

Answer: they don’t have free will: superdeterminism.

The Mouse-dropping argument

“ Your theory is absurd. Suppose Alice and Bob both
carry with them a cage, with in it a mouse.

“ At t = t1, an atom emits two entangled photons.
“ At t = t2 � t1 both Alice and Bob count how many droppings

their mouse has produced.
“ At t = t3, immediately after t2, they set their polarisation filters

according to whether the number of droppings is even or odd.
“ And now you tell me that the decaying atom already knew,

in andvance, how the bowels of these mice work?
“ This is ridiculous! ”
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The mouse droppings function:

W (a, b, c) = 1
2π2 | sin(4c − 2a− 2b)| .

W

x 2π0

c = joint polarisations entangled particles
a = filter polarisation chosen by Alice
b = filter polarisation chosen by Bob

x = 2c − a− b
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What happened according to the CAI ?

We have the ontology conservation law :

Ontic states evolve into ontic states.

classical
template〈`|k〉template =

∑
k

λn
classical〈`|n〉ont

If Alice makes an infinitesimal modification of her settings, the
classical state will change → all ontic states will change:

classical
template〈`+ δ`|k〉template =

∑
k

λm
classical〈`+ δ`|m〉ont

All Alice’s ontological states |m〉ont are now different from all
|n〉ont that she had before.

22 / 27



All Alice’s ontological states |m〉ont are now different from all
|n〉ont that she had before.

So, both her past light-cone and her future light-cone are now
entirely different. These light-cones do overlap with Bob’s.
Does this affect Bob’s world, and that of the decaying atom S?

If all ontological states had equal probabilities, the answer would
be no. But one can easily imagine that some ontic states are more
probable than others.
In that case, the counterfactual experiment `→ `+ δ` would lead
to drastically different probabilities. So it is easy to generate
non-vanishing correlation functions that disobey Bell.
Ransom: all ontic states in the universe are associated with strong
spacelike correlations. These correlations obey the ontology
conservation law.
The photons c then automatically align in such a way that, after
detection by Alice and Bob, they are still in an ontic state.
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Conspiracy

Is this conspiracy ? Not if the ontological nature of a physical state is
conserved in time. If, at late times, a photon is observed to be in a given

polarization state, it has been in exactly the same state from the very
moment it was emitted by the source (omniscient photons).

These are future-past correlations. The conspiracy argument now

demands that the “ontological basis” be unobservable!

Non-observable hidden variables?

“Shut up and calculate!”
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The anticlimax

The Cellular automaton can perfectly well be described by a
quantum mechanical Hamiltonian.
However, we would like this Hamiltonian to reflect the fact that
the automaton is local :

H =
∑
~x

H(~x) , [H(~x), H(~x ′)] = 0 if |~x − ~x ′| > ε . (5)

But also: 〈 H 〉 ≥ 0 . (6)

It is easy to find an H that obeys (5), and one that obeys (6),
but it is difficult to find an Hamiltonian obeying both (5) and (6).
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In gravity,

H(~x) plays an important role as the generator of a local time
diffeomorphism.

Also, H(~x) = T00(~x , t) is he (classical) source of space-time
curvature — the gravitational field.

Could this mean that quantum gravity is essential for the
understanding of locality in QM?

How does the hierarchy problem enter?
( Where doe those large numbers in physics come from? )
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arXiv: 1204.4926
arXiv: 1205.4107
arXiv: 1207.3612
arXiv: 1405.1548.

THE END
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