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What	
  if	
  the	
  chicken	
  were	
  to	
  cross	
  the	
  Firewall?



We can write the annihilation operators of field modes in the asymptotic past in terms of 
the corresponding creation and annihilation operators defined in terms of modes in the future:
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Black	
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  loss	
  problem
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Black	
  hole	
  Informa7on	
  loss	
  problem

If we believe in quantum theory, information cannot be lost…

After corrections, the outflow may not be entirely thermal… 

Like when a piece of charcoal burns
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Page Hypothesis:

Entanglement between radiation emitted at different times 
in the black hole life!

Page time
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So… The outflow is not entirely thermal… 

Hold on!! that’s potentially even worse!!
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Black	
  hole	
  Informa7on	
  Paradox

A: Radiation emitted after Page Time

C: Radiation emitted before Page Time
B: Infalling Radiation



Black	
  hole	
  Informa7on	
  Paradox

A: Radiation emitted after Page Time

Entropy subadditivity:

S(⇢abc) + S(⇢a)  S(⇢ab) + S(⇢ac)

C: Radiation emitted before Page Time
B: Infalling Radiation



Black	
  hole	
  Informa7on	
  Paradox

A: Radiation emitted after Page Time

E(A,B) + E(A,C)  E(A,BC)

Entropy subadditivity:

S(⇢abc) + S(⇢a)  S(⇢ab) + S(⇢ac)

C: Radiation emitted before Page Time
B: Infalling Radiation

Entanglement subadditivity:



Black	
  hole	
  Informa7on	
  Paradox

Possible Solution: Firewalls!
Almheiri, Ahmed; Marolf, Donald; Polchinski, Joseph; Sully, James. Journal of High Energy Physics 2013 (2). 



Black	
  hole	
  Informa7on	
  Paradox	
  (Firewalls)

Somehow dynamics is such that it destroys the correlations 
between “in” and “out” regions

E(A,B) + E(A,C)  E(A,BC)

Entanglement subadditivity:

Make	
  this	
  zero

What-if scenario:



Black	
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  (Firewalls)

“Charcoalization” of the BH
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Figure 14: time curve of renormalized entanglement entropy between degrees
of freedom in [−2, x2] and outside ones for the trajectory of eq. (11) with
κ = 1,λ = 100 and h = 500.

composite system in a coarse-grained meaning [21]. In asymptotically anti-
de Sitter spacetimes, there exist thermal equilbriums for B and R. They
exchange energy bi-directionally. By adiabatically slowly changing system
parameters including external forces, and position and pressure of a mirror
surrounding R (if we have the mirror), various sizes of black holes may ap-
pear. From the general results in section 2, it turns out that each equilibrium
state is typical, and the reduced state for the smaller subsystem among B
and R is a Gibbs state with finite temperature, though no firewall emerges.
Plotting entanglement entropy as a function of the inverse of black hole size
generates a Page-like curve, in which entanglement entropy equals thermal
entropy for the smaller subsystem. This may become relevant in the future
research of quantum black holes, though it is merely a side story for the
original information loss problem.

21

Perhaps Information is released in vacuum fluctuations in a last burst 



Firewalls	
  are	
  ‘Monsters’

Divergences in the stress-energy 
tensor: Violence at the horizon



Measuring	
  the	
  field

Monsters might exist, but how can you tell if you don’t look under your bed? 



Measuring	
  the	
  field

How do we measure quantum fields?

Particle detectors: Non-relativistic 
quantum systems coupling 

‘locally’ to the field



Measuring	
  the	
  field

Particles are what particle 
detectors detect

How do we measure quantum fields?

Particle detectors: Non-relativistic 
quantum systems coupling 

‘locally’ to the field



click

Unruh-DeWitt DETECTOR

-Two-level system     

ALICE & BOB’s 
DETECTOR MODEL

-Interaction Hamiltonian (interaction picture):

HI,⌫ = �⌫�⌫(t)µ⌫(t)�[~x⌫ , ⌘(t)]

-Detectors:



HI,⌫ = �⌫�⌫(t)µ⌫(t)�[~x⌫ , ⌘(t)]

DETECTOR-FIELD   
INTERACTION HAMILTONIAN



DETECTOR-FIELD   
INTERACTION HAMILTONIAN

0

Coupling 
strength

Switching function

Detector’s 
world-line

Monopole 
moment

HI,⌫ = �⌫�⌫(t)µ⌫(t)�[~x⌫ , ⌘(t)]



DETECTOR-FIELD   
INTERACTION HAMILTONIAN

0

Coupling 
strength

Switching function

Detector’s 
world-line

Monopole 
moment

HI,⌫ = �⌫�⌫(t)µ⌫(t)�[~x⌫ , ⌘(t)]

Total Interaction 
Hamiltonian:



Sees	
  the	
  Unurh	
  effect	
  (in	
  fact	
  thermalizes)

What	
  does	
  time	
  evolution	
  do	
  to	
  the	
  state?

Pointlike	
  H.O.	
  detector	
  with	
  acceleration	
  “a”⇢0 = |0dih0d|⌦ |0ih0|

) Squeezed	
  thermal	
  state

W.	
  G.	
  Brenna,	
  E.	
  G.	
  Brown,	
  R.	
  B.	
  Mann,	
  E.	
  M-­‐M,	
  PRD	
  87,	
  084062	
  (2013)	
  

How	
  much	
  squeezed?/	
  How	
  much	
  thermal?

-­‐Ratio	
  of	
  the	
  energy	
  contribution	
  from	
  squeezing	
  	
  and	
  thermality
-­‐(Relative)	
  Entropy

The	
  UDW	
  detector	
  experiences:	
  

-­‐Detector	
  Squeezing	
  
-­‐Multimode	
  squeezing	
  detector-­‐Xield	
  
-­‐Phase	
  rotations



Entanglement	
  Harvesting

II I
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(Spacelike)	
  Entanglement	
  Harvesting

II I
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F
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| {z }
|0i

1-­‐D	
  Harmonic	
  lattice	
  in	
  the	
  Ground	
  state

ji

How do we get two systems entangled by means
of local interactions with a lattice in the ground state?

A B

Two possible mechanisms.
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  state

A B

ji

1) Communication via phonons
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  Harmonic	
  lattice	
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  Ground	
  state

A B

⇢AB 6=
X

i

pi⇢A ⌦ ⇢B

1) Communication via phonons

Limited by the speed of ‘sound’
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1-­‐D	
  Harmonic	
  lattice	
  in	
  the	
  Ground	
  state

ji

There’s another possibility:

Take advantage of pre-existent entanglement
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|0i 6=
O
n
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ji

‘Non-local’ basis: Normal modes |0i , |1i , |2i , . . .

{|n1, . . . , ni, . . . , nj , . . .i}‘Local’ basis: individual number states
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A B

ji

2) Swapping ground state entanglement

| {z }
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2) Swapping ground state entanglement



1-­‐D	
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  state

A B

ji

Local coupling to the vacuum: Observed fluctuations are correlated

2) Swapping ground state entanglement
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ji

2) Swapping ground state entanglement
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A B

⇢AB 6=
X

i

pi⇢A ⌦ ⇢B

NOT Limited by the speed of ‘sound’

2) Swapping ground state entanglement



Quantum	
  Fields

2) Swapping vacuum entanglement

1) Via exchange of real field quanta

A 1D quantum field can be thought as the ‘continuum limit’ of such a lattice

Two mechanisms to get ‘atoms’ entangled via interaction with quantum fields:

II I

c

F

P

II I

c

F

P



Can	
  we	
  extract	
  vacuum	
  entanglement?



Can	
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  extract	
  vacuum	
  entanglement?

Volume 153, number 6,7 PHYSICS LETTERS A 11 March 1991

Non-local correlations in quantum electrodynamics

Antony Valentini’
Institutefor Theoretical Physics, Technical University Vienna, Karlsp/atz 13, A-1040 Vienna, Austria

Received 18 June 1990; accepted for publication 16 January 1991
Communicated by J.P. Vigier

It is shown that a pair of initially uncorrelated bare atoms, separated by a distance R, develop non-local statistical correlations
in a time t< R/c. The effects arise from the non-locality of the Feynman photon propagator, and from interference between the
two indistinguishable ways ofjointly emitting a pair of photons. For physical dressed atoms, the latter effect leads to a non-locally
correlated probability for joint spontaneous emission. The effects may also be understood in terms ofnon-locally-correlated vac-
uum-field fluctuations.

We show that a pair of statistically uncorrelated where X1 is the displacement of electron i from its
bare atoms at =0, separated by a distance R, be- nucleus. We discuss transitions from bare states (i.e.
come statistically correlated in time t< R/c, the simultaneous eigenstates of HOA, H0B and HOEM) at
magnitude of the correlations depending bothon time I = 0 to bare states at t>0. Observation of these tran-
and on the separation R. For physical (dressed) at- sition formally requires measurement ofthe bare op-
oms, we predict a non-locally correlatedjoint spon- erators HOA, HOB, HOEM at 1=0 and at t>0. Energy
taneous emission. The effects may be understood “non-conserving” processes E0~E,+y are clearly
either in terms of non-local photon “propagation”, possible for finite times, though of course the total
or in terms of non-locally-correlated vacuum-field energy H is strictlyconserved at all times ~2 [3]. The
fluctuations. photon exchange amplitude <E1E0OIS(t, 0) løo>

Consider first two bare two-level atoms A and B, does not vanish for t<R/c, previous results to the
located at 0 and R respectively, with, at t= 0, A in the contrary being due either to use of an approximation
bare ground state I En)., B in the bare excited state in evaluation of integrals over photon momentum
E,>, and no photons present. The interaction-pic- [41,or to use of the resonant rotating-waveapprox-

ture initial state I øo> = E0E,O> is assumed toevolve imation [5]. We restrict our attention ~ to the case
in time according to the interaction part H1 of the t—0, where we have
gauge-independent Hamiltonian which describes a S~(t 0) = ( — i/h)” ( 1”/n! )H~(0)
retarded electric-dipole interaction ~‘,

where S= > ~ S~”~may be regarded as an expan-
H,=eXAE(0,t)+eXBE(R,t) , sion in powers ofet.

To evaluate probabilities to order a
2, whereby

atom A is excited, requires inclusion of the processes
Present address: International School for Advanced Studies,

shown in fig. 1. We find [3]
Strada Costiera 11, 1-34014 Trieste, Italy.

~ This Hamiltonian is extensively used in quantum optics (see, <E, E
0 01 S (2)1 øo> = — (2aitc/ V) t

2 (R)
for example, ref. [I]). It generates a causal (retarded) evo-
lution for the field operator E, and includes the contribution
from the inter-Coulomb interaction. See ref. [2]. It also has ~2 It is the bare energy alone which is not conserved, just as the
the advantage of avoiding gauge-dependence ambiguities, kinetic energy alone ofa classical particle cannot be conserved
which arise from use of the pA interaction over finite times in a region ofnon-uniform potential.
(see ref. [3]). ~ For discussion ofthe case t0, see ref. [31.

Elsevier Science Publishers B.V. (North-Holland) 321
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Violating Bell’s inequalities in vacuum

Benni Reznik, Alex Retzker, and Jonathan Silman
School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 69978, Israel

!Received 23 November 2004; published 14 April 2005"

We employ an approach wherein the ground state entanglement of a relativistic free scalar field is directly
probed in a controlled manner. The approach consists of having a pair of initially nonentangled detectors
locally interact with the vacuum for a finite duration T, such that the two detectors remain causally discon-
nected, and then analyzing the resulting detector mixed state. We show that the correlations between arbitrarily
far-apart regions of the vacuum cannot be reproduced by a local hidden-variable model, and that as a function
of the distance L between the regions, the entanglement decreases at a slower rate than #exp$−!L /cT"3%.

DOI: 10.1103/PhysRevA.71.042104 PACS number!s": 03.65.Ud, 03.65.Ta, 11.10.!z, 31.15.Ar

It is known that the vacuum state of a relativistic free field
is entangled. For two complementary regions of space-time,
such as x"0 and x#0, this entanglement is closely related
to the Unruh acceleration radiation effect $1%, and gives rise
to a violation of Bell’s inequalities $2,3%. For two fully sepa-
rated regions, entanglement persists $4%, although, it is not
known in this case whether Bell’s inequalities are violated,
and how entanglement decays with the increase of separa-
tion, as compared to correlations. Similar questions concern-
ing entanglement have been addressed in the case of discrete
models $5–7%.

In this paper we shall study this problem by probing the
field’s entanglement with a pair of localized two-level detec-
tors $8%. This is done as follows. A state is prepared in which
the two detectors are not entangled with one another, or the
field. We then have each of the detectors locally interact with
the field for a finite duration, such that the detectors remain
causally disconnected throughout the process !Fig. 1". Since
entanglement cannot be produced locally $9%, the net en-
tanglement between the detectors, once the interaction has
been switched off, must necessarily have its origin in
vacuum correlations. The interaction thus serves as a means
of redistributing entanglement between the field and the de-
tectors. We shall show that for arbitrarily far-apart regions,
the detectors’ final mixed state, after filtering, violates Bell’s
inequalities, and in the process obtain a lower bound on the
amount of vacuum entanglement.

To setup the model, we shall assume that the detectors are
localized within a region of a typical scale of R, and are
separated by a much larger distance L$R. Consistency with
relativity requires us to use detectors of a rest mass M, for
which R$%Compton=& /Mc. In this limit, the effects of both
detector pair creation, and the “leakage” of each detector’s
wave function to the outside of its localization region, be-
come exponentially small, of the order of #exp!−2cMR /&"
$10,11%. Note that this ensures that the overlap between the
detectors’ wave functions is negligible. Under these condi-
tions, in their rest frame, the detectors can be described as
nonrelativistic quantum-mechanical systems. Finally, we
shall assume that, by means of an external coupler, each
detector’s degrees of freedom can be coupled “at will” to the
field. Since the coupler need not be of the same type as the
studied field, we shall make the additional assumption that it
can be described classically, and therefore does not generate
entanglement.

There have been several proposals for detector models
which can satisfy the above requirements; notably, the
Unruh-Wald “particle in a box” detector $12% and the DeWitt
monopole detector model $13%. In both models the detector
Hamiltonian is !' /2"(z, with ' being the energy gap be-
tween the two levels and (z a Pauli matrix. The field-detector
interaction Hamiltonian is

Hint = )!t"& d3x *!x!"!e+i't(+ + e−i't(−"+!x!,t" . !1"

+!x! , t" is a relativistic free scalar field in three spatial dimen-
sions, the (± are the detector’s ladder operators, and )!t"
governs the strength and duration of the interaction. *!x!" is a
function of the detector’s spatial degrees of freedom, and is
determined by the model employed $14,15%.

Consider now a pair of DeWitt monopole detectors, A and
B, that are localized about the coordinates x!A and x!B, respec-
tively. These detectors interact with the field through Hint
=HA+HB, where HA and HB are interaction Hamiltonians of
the form of Eq. !1". The window functions )A!t" and )B!t" are
chosen to vanish except for a finite duration T, such that
cT,L= 'x!B−x!A', ensuring that the detectors remain causally
disconnected throughout the interaction. In the following we
shall work in the Dirac interaction representation and employ
“natural” units !&=c=1".

Since the interaction takes place in two causally discon-

FIG. 1. The world lines of detectors A and B are shown for the
duration of the interaction. The horizontal and vertical axes are
space and time, respectively. The arrows denote the emitted radia-
tion. Notice that the radiation emitted by detector A!B" does not
affect detector B!A", since for t#T the interaction is switched off.

PHYSICAL REVIEW A 71, 042104 !2005"

1050-2947/2005/71!4"/042104!4"/$23.00 ©2005 The American Physical Society042104-1

Entanglement between the Future and the Past in the Quantum Vacuum

S. Jay Olson* and Timothy C. Ralph
Centre for Quantum Computing Technology, Department of Physics, University of Queensland, St Lucia, Queensland 4072, Australia

(Received 5 March 2010; published 17 March 2011)

We note that massless fields within the future and past light cone may be quantized as independent

systems. The vacuum is shown to be a nonseparable state of these systems, exactly mirroring the known

entanglement between the spacelike separated Rindler wedges. This leads to a notion of timelike

entanglement. We describe an inertial detector which exhibits a thermal response to the vacuum when

switched on at t ¼ 0, due to this property. The feasibility of detecting this effect is discussed, with natural

experimental parameters appearing at the scale of 100 GHz.

DOI: 10.1103/PhysRevLett.106.110404 PACS numbers: 03.65.Ud, 03.70.+k, 04.20.Gz, 04.70.Dy

A basic and far-reaching property of the quantum vac-
uum is that it is an entangled state—a fact underlying an
impressive number of theoretical insights and predictions
[1]. In the case of flat Minkowski space-time, this is
typically shown in the context of the Unruh effect [2–4].
There, the vacuum state of the field can be written as an
entangled state between two sets of modes, respectively,
spanning two space-time wedges, known as the Rindler
wedges (see Fig. 1). A uniformly accelerated observer sees
only one set of Rindler modes. The tracing out of the
unobserved modes leads to the prediction that such an
accelerated observer sees a thermalized vacuum.

Having been predicted over 30 years ago, the Unruh
effect remains unobserved. Its validity, though widely
accepted, is sometimes debated on theoretical grounds
[5–7]. The small scale of the effect motivates a search for
related phenomena that can be tested experimentally.

Here, our main result is to demonstrate that the same
entanglement exists between massless fields within the
future and past light cone (F and P) as between the left
and right Rindler wedges (L and R), and that the Unruh
effect can be mapped onto an equivalent thermal effect for
an inertial observer interacting with the field only in the
future or the past. We will show the explicit form of this
timelike entanglement for a massless scalar field in 2-d
space-time, and the detector effect in 4-d space-time.
Dimensional analysis suggests that observation of this
effect may be within range of current technology.

This Letter is organized as follows: We first note that
massless fields in F and P may be quantized as indepen-
dent systems, and then describe our coordinatization of
space-time, and the mode functions living in each quad-
rant. We then express the state of the Minkowski vacuum
restricted to F and P in terms of these modes, and note
entanglement. An Unruh-DeWitt detector is then de-
scribed, which shows a thermal response to these modes
in F (or P). The feasibility of an experimental observation
of this effect is discussed. We then offer some conclusions.

Future-past as independent systems.—The concept of
entanglement between the left and right Rindler wedges

rests on the fact that the fields within may be quantized
as independent systems. This is expressed through the
vanishing of the Pauli-Jordan function, i!ðx# yÞ ¼
½!̂ðxÞ; !̂yðyÞ& for spacelike intervals. This general feature
holds for both massive and massless fields.
In the case of massless fields, however, the Pauli-Jordan

function !ðx# yÞ vanishes for all but lightlike intervals,
ðx# yÞ2 ¼ 0 [8]. In particular, it vanishes for timelike
intervals. This will allow us to regard the fields in F and
P as independent systems.
In what follows, we assume a massless, noninteracting

field for which !̂ðxFÞ and !̂ðxPÞ commute. It is important
to note that the concept of independent systems also re-
mains valid as an approximation when the commutator is
small but nonvanishing, as in the case of an arbitrarily
small but nonvanishing mass. This ensures that the concept
of timelike entanglement we develop here remains stable
under small deviations from the ideal case.
Coordinates.—We now break space-time into quadrants

F, P, R, L, and introduce coordinates for each. Each of
these coordinate systems will be used to define a set of field
modes, complete in each region. We emphasize that these
modes are not all independent from one another; the modes

FIG. 1. Space-time divided into quadrants consisting of re-
gions contained by the future and past light cones (F and P),
and the right and left Rindler wedges (R and L).

PRL 106, 110404 (2011) P HY S I CA L R EV I EW LE T T E R S
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Extracting Past-Future Vacuum Correlations Using Circuit QED

Carlos Sabı́n,1 Borja Peropadre,1 Marco del Rey,1 and Eduardo Martı́n-Martı́nez1,2

1Instituto de Fı́sica Fundamental, CSIC, Serrano 113-B, 28006 Madrid, Spain*
2Department of Physics and Astronomy and Department of Applied Mathematics, Institute for Quantum Computing,

University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
(Received 15 February 2012; revised manuscript received 25 May 2012; published 17 July 2012)

We propose a realistic circuit QED experiment to test the extraction of past-future vacuum entangle-

ment to a pair of superconducting qubits. The qubit P interacts with the quantum field along an open

transmission line for an interval Ton and then, after a time-lapse Toff , the qubit F starts interacting for a

time Ton in a symmetric fashion. After that, past-future quantum correlations will have transferred to the

qubits, even if the qubits do not coexist at the same time. We show that this experiment can be realized

with current technology and discuss its utility as a possible implementation of a quantum memory.

DOI: 10.1103/PhysRevLett.109.033602 PACS numbers: 42.50.!p, 03.65.Ud, 03.67.Lx, 85.25.!j

Introduction.—The fact that the vacuumof a quantum
field presents quantum entanglement was discovered long
ago [1–3], but it was considered a mere formal result until
it was addressed from an applied perspective in [4]. Since
then, this intriguing property has attracted a great deal of
attention as a possible new resource for quantum-
information tasks [5–8].

As shown in [4], the entanglement contained in the
vacuum of a scalar field can be transferred to a pair of
two-level spacelike separated detectors interacting with
the field at the same time. Unfortunately, this theoretical
result seems to be very difficult to translate into an experi-
ment, even in the context of a trapped-ion simulation [5].
Recently, it has also been proven [9] that the vacuum of a
massless scalar field contains quantum correlations [10]
between the future and the past light cones. A theoretical
method of extraction by transfer to detectors interacting
with the field at different times has also been proposed
[11], but the particular time dependence of the energy
gaps seems extremely challenging from the experimental
viewpoint. Another ideal proposal was provided in [12]
with a setting that seems even more difficult to tackle
experimentally.

On the other hand, circuit QED [13] provides a frame-
work in which the interaction of two-level systems with a
quantum field can be naturally considered. The combina-
tion of superconducting qubits with transmission lines
implement an artificial 1D matter-radiation interaction,
with the advantage of a large experimental accessibility
and tunability of the physical parameters. Using these
features, fundamental problems in quantum field theory
hitherto considered as ideal are now accessible to experi-
ment [14]. In particular, the possibility of achieving an
ultrastrong coupling regime [15–17] has already been ex-
ploited to propose a feasible experimental test of the
extraction of vacuum entanglement to a pair of spacelike
separated qubits [7].

In this work, we will take advantage of the aforemen-
tioned features of circuit QED in the ultrastrong coupling
regime in order to propose a realistic experiment for the
extraction of past-future correlations [18] contained in the
vacuum of a quantum field. We will consider a setup
consisting of a pair of superconducting qubits P and F
with constant energy gaps in a common open transmission
line [Fig. 1(a)]. First, the interaction of P with the vacuum
of the field is on for a time interval Ton (we call this interval
‘‘the past’’). Then, P is disconnected from the field during
a time Toff . Finally, the interaction of F is switched on
during Ton (’’future’’) while keeping P disconnected. After
this procedure, we will show that the qubits can end up in a
strongly correlated quantum state, in spite of not having
interacted with the field at the same time. We will consider
three different spacetime configurations: that the qubits are
spacelike or timelike separated and, in the latter case, with
or without photon exchange allowed. Perhaps the most
surprising result is that, even if photon exchange is forbid-
den, the qubits can get entangled by a transference of
vacuum correlations, as we will show. However, this is
not the only interesting aspect of our scheme. If there is

FIG. 1 (color online). Experimental proposal for past-future
entanglement extraction. (a) Time evolution of our protocol: the
qubit P interacts with the vacuum field (!c ) for a time Ton.
After a certain time Toff with no interaction, a second qubit F
interacts with the field getting entangled with the qubit P.
(b) Switchable coupling design: a flux qubit (top ring) is coupled
to the field !c by ways of two loops. Varying the magnetic
fluxes "2 and "3, we deactivate the qubit-field coupling.
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'Smooth and sharp creation of a Dirichlet wall in 1+1 quantum field 
theory: how singular is the sharp creation limit?

Mimics the severing of correlations that supposedly develop dynamically during evaporation
as discussed in AMPS
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(1)
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†
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When the initial state has the form ⇢
0

= ⇢
d,0 ⌦ ⇢�,0,

where ⇢
d,0 and ⇢�,0 are respectively the initial state of

the two-detector subsystem and the initial state of the
field, and assuming that ⇢�,0 satisfies

Tr�
�
�(x)⇢�,0

�
= 0 , (4)

we find that the final state of the two-detector subsystem
is

⇢
d,T = Tr�(⇢T ) = ⇢

d,0 + ⇢
(2)

d,T +O(�3) , (5a)
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where W [x⌫(⌧), x⌘(⌧ 0)] denotes the pullback of the
Wightman function on the detectors’ worldlines,

W [x⌫(⌧), x⌘(⌧
0)] = Tr�

�
�
�
x⌫(⌧)

�
�
�
x⌘(⌧

0)
�
⇢�,0

�
. (6)

Detectors with a Rindler firewall.— We now
specialise to (1 + 1)-dimensional Minkowski spacetime,
ds2 = �dt2+dx2 = �du dv, where u = t�x and v = t+x.

We take � to be massless and ⇢�,0 to be the Rindler
firewall state described in [8]. The one-point function of
⇢�,0 satisfies (4), as follows by extending the Wightman
function discussion given in [8] to the one-point function.
The Wightman function of ⇢�,0 is

WF (x, x
0) = Tr�

�
�(x)�(x0)⇢�,0

�

= W
0

(x, x0) +�W (x, x0) , (7)

whereW
0

is the Wightman function in the Minkowki vac-
uum |0ih0| and �W is the correction due to the firewall.
For W

0

we have

W
0

(x, x0) =
�1

4⇡
log

⇥
⇤2(✏+ i�u)(✏+ i�v)

⇤
, (8)

where �u = u � u0, �v = v � v0, the positive constant
⇤ is an infrared cuto↵, the logarithm takes its principal

x

t

Alice Bob

R

Tf

xA

T

Figure 1. Spacetime diagram of the two-detector systems with
the Rindler firewall. The dashed line at t = x is the firewall.
The solid lines are the worldlines of the Alice detector and
the Bob detector, switched on at t = 0 and o↵ at t = T > 0.
Alice crosses the firewall during the detectors’ operation (at
t = Tf = xA in the diagram) but Bob does not.

branch and ✏ ! 0
+

. The full expression for �W (x, x0) is
lengthy but reduces for v > 0 and v0 > 0 to

�W (x, x0) =
1

4⇡

h
⇥(u)✓(�u0) + ✓(�u)✓(u0)

i

⇥
⇣
log(⇤ |u� u0|) + i

⇡

2
sgn(u� u0)

⌘
. (9)

In words, (8) and (9) show that when x and x

0 are
to the future of the left-going Rindler horizon t = �x
but on opposite sides of the right-going Rindler horizon
t = x, WF (x, x0) is missing the contribution from the
right-moving part of the field. This absence of correla-
tions across the Rindler horizon models the absence of
correlations that is argued to develop dynamically in an
evaporating black hole spacetime [3].
For the detectors in the presence of the firewall, we

take the worldline of detector A (Alice) to be at x =
xA > 0 and the worldline of detector B (Bob) to be at
x = xA + R, where R > 0 is the spatial separation. The
detectors are switched on at t = 0, and they are switched
o↵ at a time when Alice has already crossed the firewall
at t = x but Bob has not, as shown in Figure 1.
We ask: If Alice and Bob are initially entangled, how

does Alice’s crossing the firewall a↵ect this entangle-
ment?
Methods.— We assume each detector to be a two-

level system. We denote the respective energy gaps
by ⌦⌫ , the ground states by |g⌫i and the excited states
by |e⌫i. The monopole moment operators are then
µ⌫(⌧) = �+

⌫ e
i⌦⌫⌧ + ��

⌫ e
�i⌦⌫⌧ , where the nonvanishing

matrix elements of the raising and lowering operators �±
⌫

are he⌫ |�+

⌫ |g⌫i = hg⌫ |��
⌫ |e⌫i = 1.

For each of the the individual detectors we may intro-
duce a two-by-two matrix representation in which (sup-
pressing the detector index)

|gi =
✓
1
0

◆
, |ei =

✓
0
1

◆
, µ(⌧) =

✓
0 e�i⌦⌧

ei⌦⌧ 0

◆
. (10)
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For the two-detector system we employ the Kronecker
product representation in which
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(11)
where the first label in |iji refers to Alice and the second
label to Bob. It follows that

µA(⌧) =
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We take the initial state of the Alice-Bob system to be
the maximally entangled state | 

max

i = 1p
2
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In the final state ⇢
d,T (5), we separate the contributions
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d,T as
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where
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Finally, we characterise the entanglement in the Alice-
Bob final state ⇢

d,T by the negativity N [14]. For a two-
cubit system this monotone provides a strict criterion of
entanglement in the sense that it vanishes if and only if
a state is separable. Working perturbatively to order �2,
the negativity can be computed in a straightforward way
from (5a) and (11)–(16).
Results.— With the detector trajectories shown in

Figure 1, we first consider switching functions with a
sharp switch-on and switch-o↵,

�A(⌧) = �B(⌧) = ⇥(⌧)⇥
�
1� (⌧/T )

�
, (17)

where ⇥ is the Heaviside function. Figure 2 shows a rep-
resentative plot of the negativity as a function of xA with

the other parameters fixed. When xA > T , Alice does
not fall through the firewall during the operation of the
detectors (see Fig. 1) and the entanglement degradation
is just that in Minkowski vacuum [13], independent of xA.
When xA < T , Alice’s falling through the firewall does
a↵ect the negativity. Two outcomes are apparent from
the figure.
First, the firewall e↵ect on the negativity depends con-

tinuously on xA and remains small in magnitude: the
firewall does not wash up the Alice-Bob correlations as
might have been expected from the gravitational firewall
debate [1–7]. As a technical point, we note that the small-
ness of the e↵ect gives confidence in the reliability of our
perturbative analysis.
Second, over most of the parameter range the firewall

enhances the degradation of Alice-Bob entanglement,
compared with the degradation in Minkowski vacuum.
This is what one might have expected from the gravi-
tational firewall debate [1–7]. However, if Alice crosses
the firewall shortly before turning her detector o↵, the
e↵ect is the opposite: in this case the firewall helps Al-
ice and Bob maintain their entanglement. Developing a
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Bob final state ⇢

d,T by the negativity N [14]. For a two-
cubit system this monotone provides a strict criterion of
entanglement in the sense that it vanishes if and only if
a state is separable. Working perturbatively to order �2,
the negativity can be computed in a straightforward way
from (5a) and (11)–(16).
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where ⇥ is the Heaviside function. Figure 2 shows a rep-
resentative plot of the negativity as a function of xA with

the other parameters fixed. When xA > T , Alice does
not fall through the firewall during the operation of the
detectors (see Fig. 1) and the entanglement degradation
is just that in Minkowski vacuum [13], independent of xA.
When xA < T , Alice’s falling through the firewall does
a↵ect the negativity. Two outcomes are apparent from
the figure.
First, the firewall e↵ect on the negativity depends con-

tinuously on xA and remains small in magnitude: the
firewall does not wash up the Alice-Bob correlations as
might have been expected from the gravitational firewall
debate [1–7]. As a technical point, we note that the small-
ness of the e↵ect gives confidence in the reliability of our
perturbative analysis.
Second, over most of the parameter range the firewall

enhances the degradation of Alice-Bob entanglement,
compared with the degradation in Minkowski vacuum.
This is what one might have expected from the gravi-
tational firewall debate [1–7]. However, if Alice crosses
the firewall shortly before turning her detector o↵, the
e↵ect is the opposite: in this case the firewall helps Al-
ice and Bob maintain their entanglement. Developing a
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More demanding than computing transition rates…
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Figure 1. Spacetime diagram of the two-detector systems with
the Rindler firewall. The dashed line at t = x is the firewall.
The solid lines are the worldlines of the Alice detector and
the Bob detector, switched on at t = 0 and o↵ at t = T > 0.
Alice crosses the firewall during the detectors’ operation (at
t = Tf = xA in the diagram) but Bob does not.
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In words, (8) and (9) show that when x and x

0 are
to the future of the left-going Rindler horizon t = �x
but on opposite sides of the right-going Rindler horizon
t = x, WF (x, x0) is missing the contribution from the
right-moving part of the field. This absence of correla-
tions across the Rindler horizon models the absence of
correlations that is argued to develop dynamically in an
evaporating black hole spacetime [3].

For the detectors in the presence of the firewall, we
take the worldline of detector A (Alice) to be at x =
xA > 0 and the worldline of detector B (Bob) to be at
x = xA + R, where R > 0 is the spatial separation. The
detectors are switched on at t = 0, and they are switched
o↵ at a time when Alice has already crossed the firewall
at t = x but Bob has not, as shown in Figure 1.

We ask: If Alice and Bob are initially entangled, how
does Alice’s crossing the firewall a↵ect this entangle-
ment?

Methods.— We assume each detector to be a two-
level system. We denote the respective energy gaps
by ⌦⌫ , the ground states by |g⌫i and the excited states
by |e⌫i. The monopole moment operators are then
µ⌫(⌧) = �+

⌫ e
i⌦⌫⌧ + ��

⌫ e
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⌫ |e⌫i = 1.
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where W [x⌫(⌧), x⌘(⌧ 0)] denotes the pullback of the
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Detectors with a Rindler firewall.— We now
specialise to (1 + 1)-dimensional Minkowski spacetime,
ds2 = �dt2+dx2 = �du dv, where u = t�x and v = t+x.

We take � to be massless and ⇢�,0 to be the Rindler
firewall state described in [8]. The one-point function of
⇢�,0 satisfies (4), as follows by extending the Wightman
function discussion given in [8] to the one-point function.
The Wightman function of ⇢�,0 is
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the Rindler firewall. The dashed line at t = x is the firewall.
The solid lines are the worldlines of the Alice detector and
the Bob detector, switched on at t = 0 and o↵ at t = T > 0.
Alice crosses the firewall during the detectors’ operation (at
t = Tf = xA in the diagram) but Bob does not.
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For the two-detector system we employ the Kronecker
product representation in which
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where the first label in |iji refers to Alice and the second
label to Bob. It follows that
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Finally, we characterise the entanglement in the Alice-
Bob final state ⇢

d,T by the negativity N [14]. For a two-
cubit system this monotone provides a strict criterion of
entanglement in the sense that it vanishes if and only if
a state is separable. Working perturbatively to order �2,
the negativity can be computed in a straightforward way
from (5a) and (11)–(16).
Results.— With the detector trajectories shown in

Figure 1, we first consider switching functions with a
sharp switch-on and switch-o↵,

�A(⌧) = �B(⌧) = ⇥(⌧)⇥
�
1� (⌧/T )

�
, (17)

where ⇥ is the Heaviside function. Figure 2 shows a rep-
resentative plot of the negativity as a function of xA with

the other parameters fixed. When xA > T , Alice does
not fall through the firewall during the operation of the
detectors (see Fig. 1) and the entanglement degradation
is just that in Minkowski vacuum [13], independent of xA.
When xA < T , Alice’s falling through the firewall does
a↵ect the negativity. Two outcomes are apparent from
the figure.
First, the firewall e↵ect on the negativity depends con-

tinuously on xA and remains small in magnitude: the
firewall does not wash up the Alice-Bob correlations as
might have been expected from the gravitational firewall
debate [1–7]. As a technical point, we note that the small-
ness of the e↵ect gives confidence in the reliability of our
perturbative analysis.
Second, over most of the parameter range the firewall

enhances the degradation of Alice-Bob entanglement,
compared with the degradation in Minkowski vacuum.
This is what one might have expected from the gravi-
tational firewall debate [1–7]. However, if Alice crosses
the firewall shortly before turning her detector o↵, the
e↵ect is the opposite: in this case the firewall helps Al-
ice and Bob maintain their entanglement. Developing a
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not fall through the firewall during the operation of the
detectors (see Fig. 1) and the entanglement degradation
is just that in Minkowski vacuum [13], independent of xA.
When xA < T , Alice’s falling through the firewall does
a↵ect the negativity. Two outcomes are apparent from
the figure.
First, the firewall e↵ect on the negativity depends con-

tinuously on xA and remains small in magnitude: the
firewall does not wash up the Alice-Bob correlations as
might have been expected from the gravitational firewall
debate [1–7]. As a technical point, we note that the small-
ness of the e↵ect gives confidence in the reliability of our
perturbative analysis.
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compared with the degradation in Minkowski vacuum.
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ds2 = �dt2+dx2 = �du dv, where u = t�x and v = t+x.
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Figure 1. Spacetime diagram of the two-detector systems with
the Rindler firewall. The dashed line at t = x is the firewall.
The solid lines are the worldlines of the Alice detector and
the Bob detector, switched on at t = 0 and o↵ at t = T > 0.
Alice crosses the firewall during the detectors’ operation (at
t = Tf = xA in the diagram) but Bob does not.
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but on opposite sides of the right-going Rindler horizon
t = x, WF (x, x0) is missing the contribution from the
right-moving part of the field. This absence of correla-
tions across the Rindler horizon models the absence of
correlations that is argued to develop dynamically in an
evaporating black hole spacetime [3].
For the detectors in the presence of the firewall, we

take the worldline of detector A (Alice) to be at x =
xA > 0 and the worldline of detector B (Bob) to be at
x = xA + R, where R > 0 is the spatial separation. The
detectors are switched on at t = 0, and they are switched
o↵ at a time when Alice has already crossed the firewall
at t = x but Bob has not, as shown in Figure 1.
We ask: If Alice and Bob are initially entangled, how

does Alice’s crossing the firewall a↵ect this entangle-
ment?
Methods.— We assume each detector to be a two-

level system. We denote the respective energy gaps
by ⌦⌫ , the ground states by |g⌫i and the excited states
by |e⌫i. The monopole moment operators are then
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For the two-detector system we employ the Kronecker
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where the first label in |iji refers to Alice and the second
label to Bob. It follows that
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In the final state ⇢
d,T (5), we separate the contributions
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Finally, we characterise the entanglement in the Alice-
Bob final state ⇢

d,T by the negativity N [14]. For a two-
cubit system this monotone provides a strict criterion of
entanglement in the sense that it vanishes if and only if
a state is separable. Working perturbatively to order �2,
the negativity can be computed in a straightforward way
from (5a) and (11)–(16).
Results.— With the detector trajectories shown in

Figure 1, we first consider switching functions with a
sharp switch-on and switch-o↵,

�A(⌧) = �B(⌧) = ⇥(⌧)⇥
�
1� (⌧/T )

�
, (17)

where ⇥ is the Heaviside function. Figure 2 shows a rep-
resentative plot of the negativity as a function of xA with

the other parameters fixed. When xA > T , Alice does
not fall through the firewall during the operation of the
detectors (see Fig. 1) and the entanglement degradation
is just that in Minkowski vacuum [13], independent of xA.
When xA < T , Alice’s falling through the firewall does
a↵ect the negativity. Two outcomes are apparent from
the figure.
First, the firewall e↵ect on the negativity depends con-

tinuously on xA and remains small in magnitude: the
firewall does not wash up the Alice-Bob correlations as
might have been expected from the gravitational firewall
debate [1–7]. As a technical point, we note that the small-
ness of the e↵ect gives confidence in the reliability of our
perturbative analysis.
Second, over most of the parameter range the firewall

enhances the degradation of Alice-Bob entanglement,
compared with the degradation in Minkowski vacuum.
This is what one might have expected from the gravi-
tational firewall debate [1–7]. However, if Alice crosses
the firewall shortly before turning her detector o↵, the
e↵ect is the opposite: in this case the firewall helps Al-
ice and Bob maintain their entanglement. Developing a
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debate [1–7]. As a technical point, we note that the small-
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compared with the degradation in Minkowski vacuum.
This is what one might have expected from the gravi-
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e↵ect is the opposite: in this case the firewall helps Al-
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When the initial state has the form ⇢
0

= ⇢
d,0 ⌦ ⇢�,0,

where ⇢
d,0 and ⇢�,0 are respectively the initial state of

the two-detector subsystem and the initial state of the
field, and assuming that ⇢�,0 satisfies

Tr�
�
�(x)⇢�,0

�
= 0 , (4)

we find that the final state of the two-detector subsystem
is
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where W [x⌫(⌧), x⌘(⌧ 0)] denotes the pullback of the
Wightman function on the detectors’ worldlines,

W [x⌫(⌧), x⌘(⌧
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Detectors with a Rindler firewall.— We now
specialise to (1 + 1)-dimensional Minkowski spacetime,
ds2 = �dt2+dx2 = �du dv, where u = t�x and v = t+x.

We take � to be massless and ⇢�,0 to be the Rindler
firewall state described in [8]. The one-point function of
⇢�,0 satisfies (4), as follows by extending the Wightman
function discussion given in [8] to the one-point function.
The Wightman function of ⇢�,0 is

WF (x, x
0) = Tr�

�
�(x)�(x0)⇢�,0

�

= W
0

(x, x0) +�W (x, x0) , (7)

whereW
0

is the Wightman function in the Minkowki vac-
uum |0ih0| and �W is the correction due to the firewall.
For W

0

we have

W
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4⇡
log

⇥
⇤2(✏+ i�u)(✏+ i�v)

⇤
, (8)

where �u = u � u0, �v = v � v0, the positive constant
⇤ is an infrared cuto↵, the logarithm takes its principal

x

t

Alice Bob

R

Tf

xA

T

Figure 1. Spacetime diagram of the two-detector systems with
the Rindler firewall. The dashed line at t = x is the firewall.
The solid lines are the worldlines of the Alice detector and
the Bob detector, switched on at t = 0 and o↵ at t = T > 0.
Alice crosses the firewall during the detectors’ operation (at
t = Tf = xA in the diagram) but Bob does not.

branch and ✏ ! 0
+

. The full expression for �W (x, x0) is
lengthy but reduces for v > 0 and v0 > 0 to
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In words, (8) and (9) show that when x and x

0 are
to the future of the left-going Rindler horizon t = �x
but on opposite sides of the right-going Rindler horizon
t = x, WF (x, x0) is missing the contribution from the
right-moving part of the field. This absence of correla-
tions across the Rindler horizon models the absence of
correlations that is argued to develop dynamically in an
evaporating black hole spacetime [3].
For the detectors in the presence of the firewall, we

take the worldline of detector A (Alice) to be at x =
xA > 0 and the worldline of detector B (Bob) to be at
x = xA + R, where R > 0 is the spatial separation. The
detectors are switched on at t = 0, and they are switched
o↵ at a time when Alice has already crossed the firewall
at t = x but Bob has not, as shown in Figure 1.
We ask: If Alice and Bob are initially entangled, how

does Alice’s crossing the firewall a↵ect this entangle-
ment?
Methods.— We assume each detector to be a two-

level system. We denote the respective energy gaps
by ⌦⌫ , the ground states by |g⌫i and the excited states
by |e⌫i. The monopole moment operators are then
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We can explicitly compute the Wightman function
for the Rindler firewall
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Detectors with a Rindler firewall.— We now
specialise to (1 + 1)-dimensional Minkowski spacetime,
ds2 = �dt2+dx2 = �du dv, where u = t�x and v = t+x.

We take � to be massless and ⇢�,0 to be the Rindler
firewall state described in [8]. The one-point function of
⇢�,0 satisfies (4), as follows by extending the Wightman
function discussion given in [8] to the one-point function.
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We ask: If Alice and Bob are initially entangled, how
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Detectors with a Rindler firewall.— We now
specialise to (1 + 1)-dimensional Minkowski spacetime,
ds2 = �dt2+dx2 = �du dv, where u = t�x and v = t+x.

We take � to be massless and ⇢�,0 to be the Rindler
firewall state described in [8]. The one-point function of
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evaporating black hole spacetime [3].

For the detectors in the presence of the firewall, we
take the worldline of detector A (Alice) to be at x =
xA > 0 and the worldline of detector B (Bob) to be at
x = xA + R, where R > 0 is the spatial separation. The
detectors are switched on at t = 0, and they are switched
o↵ at a time when Alice has already crossed the firewall
at t = x but Bob has not, as shown in Figure 1.

We ask: If Alice and Bob are initially entangled, how
does Alice’s crossing the firewall a↵ect this entangle-
ment?

Methods.— We assume each detector to be a two-
level system. We denote the respective energy gaps
by ⌦⌫ , the ground states by |g⌫i and the excited states
by |e⌫i. The monopole moment operators are then
µ⌫(⌧) = �+

⌫ e
i⌦⌫⌧ + ��

⌫ e
�i⌦⌫⌧ , where the nonvanishing

matrix elements of the raising and lowering operators �±
⌫

are he⌫ |�+

⌫ |g⌫i = hg⌫ |��
⌫ |e⌫i = 1.

For each of the the individual detectors we may intro-
duce a two-by-two matrix representation in which (sup-
pressing the detector index)

|gi =
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1
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◆
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✓
0
1

◆
, µ(⌧) =

✓
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where W [x⌫(⌧), x⌘(⌧ 0)] denotes the pullback of the
Wightman function on the detectors’ worldlines,
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Detectors with a Rindler firewall.— We now
specialise to (1 + 1)-dimensional Minkowski spacetime,
ds2 = �dt2+dx2 = �du dv, where u = t�x and v = t+x.

We take � to be massless and ⇢�,0 to be the Rindler
firewall state described in [8]. The one-point function of
⇢�,0 satisfies (4), as follows by extending the Wightman
function discussion given in [8] to the one-point function.
The Wightman function of ⇢�,0 is

WF (x, x
0) = Tr�

�
�(x)�(x0)⇢�,0

�

= W
0

(x, x0) +�W (x, x0) , (7)

whereW
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is the Wightman function in the Minkowki vac-
uum |0ih0| and �W is the correction due to the firewall.
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log
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where �u = u � u0, �v = v � v0, the positive constant
⇤ is an infrared cuto↵, the logarithm takes its principal
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Figure 1. Spacetime diagram of the two-detector systems with
the Rindler firewall. The dashed line at t = x is the firewall.
The solid lines are the worldlines of the Alice detector and
the Bob detector, switched on at t = 0 and o↵ at t = T > 0.
Alice crosses the firewall during the detectors’ operation (at
t = Tf = xA in the diagram) but Bob does not.
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In words, (8) and (9) show that when x and x

0 are
to the future of the left-going Rindler horizon t = �x
but on opposite sides of the right-going Rindler horizon
t = x, WF (x, x0) is missing the contribution from the
right-moving part of the field. This absence of correla-
tions across the Rindler horizon models the absence of
correlations that is argued to develop dynamically in an
evaporating black hole spacetime [3].

For the detectors in the presence of the firewall, we
take the worldline of detector A (Alice) to be at x =
xA > 0 and the worldline of detector B (Bob) to be at
x = xA + R, where R > 0 is the spatial separation. The
detectors are switched on at t = 0, and they are switched
o↵ at a time when Alice has already crossed the firewall
at t = x but Bob has not, as shown in Figure 1.
We ask: If Alice and Bob are initially entangled, how

does Alice’s crossing the firewall a↵ect this entangle-
ment?

Methods.— We assume each detector to be a two-
level system. We denote the respective energy gaps
by ⌦⌫ , the ground states by |g⌫i and the excited states
by |e⌫i. The monopole moment operators are then
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Figure 2. Negativity N of the Alice-Bob final state as a func-
tion of xA with the detector trajectories shown in Figure 1 and
with the sharp switching functions (17), for R = 4, T = 1.8,
⌦A = ⌦B = 1, �A = �B = 0.01 and ⇤ = 10�2 ⌧ ⌦⌫ . Before
the interaction N = 1

2 , and the evolution causes the entan-
glement to degrade. When xA > T , Alice does not cross the
firewall during her detector’s operation and the entanglement
degradation is identical to that in Minkowski vacuum. When
xA < T , Alice does cross the firewall, and the entanglement
degradation depends non-monotonically on xA.

qualitative explanation for this phenomenon could be an
interesting challenge.

One might suspect some of the properties of the graph
in Figure 2 to be specific to, and perhaps artefacts of, the
sharp switch-on and switch-o↵. To alleviate this suspi-
cion, Figure 3 shows results from a similar analysis with
Gaussian switching functions,

�A(⌧) = �B(⌧) = e�(⌧�⌧0)
2/�2

, (18)

where the parameters ⌧
0

and � are chosen as described in
the figure caption to provide a smooth approximation to
the sharp switching of Figure 2. The detectors now oper-
ate for�1 < ⌧ < 1, but the tails of the Gaussians are so
small that this noncompact support of the Gaussian does
not bring in new complications. The curve in Figure 3 is
smoother but retains the qualitative features, including a
regime where the firewall allows Alice and Bob maintain
their entanglement better than in Minkowski vacuum.
The conclusions drawn above from the sharp switching
results hence apply also to the Gaussian switching.

Conclusions.— Our main conclusion runs contrary
to the vision of a firewall as a violently singular sur-
face [3]: the Rindler firewall has only a modest e↵ect
on the entanglement between two inertial Unruh-DeWitt
detectors when one of the detectors crosses the fire-
wall. There is even a parameter range in which the fire-
wall slows down the entanglement degradation, compared
with the degradation that takes place in Minkowski vac-
uum.

Given that the Rindler firewall models the quantum
field theory correlations in a black hole firewall [8], our
results suggest that a similar conclusion should hold for

Figure 3. As in Figure 2 but with the Gaussian switching
functions (18), with � = 1 and t0 = 2, so that the Gaus-
sian switching provides a smooth approximation to the sharp
switching of Figure 2. The firewall e↵ect on Alice’s detector
is now significant for xA . 3. The qualitative properties are
as in Figure 2, including the non-monotonicity in xA.

black hole firewalls at the early stages of the Hawking
evaporation where the gravitational backreaction on the
metric is not yet significant. As the Unruh-DeWitt de-
tector captures the essential features of the interaction
between atoms and the electromagnetic field [11, 12], the
conclusion should further extend to systems of matter of
which we and our experimental apparatus are built.

In summary, the key message of this paper is that we
cannot think of a young firewall as a surface of cata-
clysmic events that erases all information about matter
that crosses the firewall. If the matter is correlated with
the outside world, these correlations will not be signifi-
cantly altered by the crossing. We may not know why
the chicken crossed the young firewall, but it did get to
the other side, with most of its memories intact.

The broader implication is that the prospective capa-
bility of an old, fully-developed firewall to solve the black
hole information loss paradox must hinge on the detailed
gravitational structure of the firewall. A quantitative de-
scription of this gravitational stucture is at present still
conspicuously lacking.
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where W [x⌫(⌧), x⌘(⌧ 0)] denotes the pullback of the
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Detectors with a Rindler firewall.— We now
specialise to (1 + 1)-dimensional Minkowski spacetime,
ds2 = �dt2+dx2 = �du dv, where u = t�x and v = t+x.

We take � to be massless and ⇢�,0 to be the Rindler
firewall state described in [8]. The one-point function of
⇢�,0 satisfies (4), as follows by extending the Wightman
function discussion given in [8] to the one-point function.
The Wightman function of ⇢�,0 is
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where �u = u � u0, �v = v � v0, the positive constant
⇤ is an infrared cuto↵, the logarithm takes its principal
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Figure 1. Spacetime diagram of the two-detector systems with
the Rindler firewall. The dashed line at t = x is the firewall.
The solid lines are the worldlines of the Alice detector and
the Bob detector, switched on at t = 0 and o↵ at t = T > 0.
Alice crosses the firewall during the detectors’ operation (at
t = Tf = xA in the diagram) but Bob does not.
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In words, (8) and (9) show that when x and x

0 are
to the future of the left-going Rindler horizon t = �x
but on opposite sides of the right-going Rindler horizon
t = x, WF (x, x0) is missing the contribution from the
right-moving part of the field. This absence of correla-
tions across the Rindler horizon models the absence of
correlations that is argued to develop dynamically in an
evaporating black hole spacetime [3].

For the detectors in the presence of the firewall, we
take the worldline of detector A (Alice) to be at x =
xA > 0 and the worldline of detector B (Bob) to be at
x = xA + R, where R > 0 is the spatial separation. The
detectors are switched on at t = 0, and they are switched
o↵ at a time when Alice has already crossed the firewall
at t = x but Bob has not, as shown in Figure 1.
We ask: If Alice and Bob are initially entangled, how

does Alice’s crossing the firewall a↵ect this entangle-
ment?

Methods.— We assume each detector to be a two-
level system. We denote the respective energy gaps
by ⌦⌫ , the ground states by |g⌫i and the excited states
by |e⌫i. The monopole moment operators are then
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Figure 2. Negativity N of the Alice-Bob final state as a func-
tion of xA with the detector trajectories shown in Figure 1 and
with the sharp switching functions (17), for R = 4, T = 1.8,
⌦A = ⌦B = 1, �A = �B = 0.01 and ⇤ = 10�2 ⌧ ⌦⌫ . Before
the interaction N = 1

2 , and the evolution causes the entan-
glement to degrade. When xA > T , Alice does not cross the
firewall during her detector’s operation and the entanglement
degradation is identical to that in Minkowski vacuum. When
xA < T , Alice does cross the firewall, and the entanglement
degradation depends non-monotonically on xA.

qualitative explanation for this phenomenon could be an
interesting challenge.

One might suspect some of the properties of the graph
in Figure 2 to be specific to, and perhaps artefacts of, the
sharp switch-on and switch-o↵. To alleviate this suspi-
cion, Figure 3 shows results from a similar analysis with
Gaussian switching functions,

�A(⌧) = �B(⌧) = e�(⌧�⌧0)
2/�2

, (18)

where the parameters ⌧
0

and � are chosen as described in
the figure caption to provide a smooth approximation to
the sharp switching of Figure 2. The detectors now oper-
ate for�1 < ⌧ < 1, but the tails of the Gaussians are so
small that this noncompact support of the Gaussian does
not bring in new complications. The curve in Figure 3 is
smoother but retains the qualitative features, including a
regime where the firewall allows Alice and Bob maintain
their entanglement better than in Minkowski vacuum.
The conclusions drawn above from the sharp switching
results hence apply also to the Gaussian switching.

Conclusions.— Our main conclusion runs contrary
to the vision of a firewall as a violently singular sur-
face [3]: the Rindler firewall has only a modest e↵ect
on the entanglement between two inertial Unruh-DeWitt
detectors when one of the detectors crosses the fire-
wall. There is even a parameter range in which the fire-
wall slows down the entanglement degradation, compared
with the degradation that takes place in Minkowski vac-
uum.

Given that the Rindler firewall models the quantum
field theory correlations in a black hole firewall [8], our
results suggest that a similar conclusion should hold for

Figure 3. As in Figure 2 but with the Gaussian switching
functions (18), with � = 1 and t0 = 2, so that the Gaus-
sian switching provides a smooth approximation to the sharp
switching of Figure 2. The firewall e↵ect on Alice’s detector
is now significant for xA . 3. The qualitative properties are
as in Figure 2, including the non-monotonicity in xA.

black hole firewalls at the early stages of the Hawking
evaporation where the gravitational backreaction on the
metric is not yet significant. As the Unruh-DeWitt de-
tector captures the essential features of the interaction
between atoms and the electromagnetic field [11, 12], the
conclusion should further extend to systems of matter of
which we and our experimental apparatus are built.

In summary, the key message of this paper is that we
cannot think of a young firewall as a surface of cata-
clysmic events that erases all information about matter
that crosses the firewall. If the matter is correlated with
the outside world, these correlations will not be signifi-
cantly altered by the crossing. We may not know why
the chicken crossed the young firewall, but it did get to
the other side, with most of its memories intact.

The broader implication is that the prospective capa-
bility of an old, fully-developed firewall to solve the black
hole information loss paradox must hinge on the detailed
gravitational structure of the firewall. A quantitative de-
scription of this gravitational stucture is at present still
conspicuously lacking.
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d,0 + ⇢
(2)

d,T +O(�3) , (5a)
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where W [x⌫(⌧), x⌘(⌧ 0)] denotes the pullback of the
Wightman function on the detectors’ worldlines,

W [x⌫(⌧), x⌘(⌧
0)] = Tr�

�
�
�
x⌫(⌧)

�
�
�
x⌘(⌧

0)
�
⇢�,0

�
. (6)

Detectors with a Rindler firewall.— We now
specialise to (1 + 1)-dimensional Minkowski spacetime,
ds2 = �dt2+dx2 = �du dv, where u = t�x and v = t+x.

We take � to be massless and ⇢�,0 to be the Rindler
firewall state described in [8]. The one-point function of
⇢�,0 satisfies (4), as follows by extending the Wightman
function discussion given in [8] to the one-point function.
The Wightman function of ⇢�,0 is

WF (x, x
0) = Tr�

�
�(x)�(x0)⇢�,0

�

= W
0

(x, x0) +�W (x, x0) , (7)

whereW
0

is the Wightman function in the Minkowki vac-
uum |0ih0| and �W is the correction due to the firewall.
For W

0

we have

W
0

(x, x0) =
�1

4⇡
log

⇥
⇤2(✏+ i�u)(✏+ i�v)

⇤
, (8)

where �u = u � u0, �v = v � v0, the positive constant
⇤ is an infrared cuto↵, the logarithm takes its principal

x
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R
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T

Figure 1. Spacetime diagram of the two-detector systems with
the Rindler firewall. The dashed line at t = x is the firewall.
The solid lines are the worldlines of the Alice detector and
the Bob detector, switched on at t = 0 and o↵ at t = T > 0.
Alice crosses the firewall during the detectors’ operation (at
t = Tf = xA in the diagram) but Bob does not.

branch and ✏ ! 0
+

. The full expression for �W (x, x0) is
lengthy but reduces for v > 0 and v0 > 0 to

�W (x, x0) =
1

4⇡

h
⇥(u)✓(�u0) + ✓(�u)✓(u0)

i

⇥
⇣
log(⇤ |u� u0|) + i

⇡

2
sgn(u� u0)

⌘
. (9)

In words, (8) and (9) show that when x and x

0 are
to the future of the left-going Rindler horizon t = �x
but on opposite sides of the right-going Rindler horizon
t = x, WF (x, x0) is missing the contribution from the
right-moving part of the field. This absence of correla-
tions across the Rindler horizon models the absence of
correlations that is argued to develop dynamically in an
evaporating black hole spacetime [3].

For the detectors in the presence of the firewall, we
take the worldline of detector A (Alice) to be at x =
xA > 0 and the worldline of detector B (Bob) to be at
x = xA + R, where R > 0 is the spatial separation. The
detectors are switched on at t = 0, and they are switched
o↵ at a time when Alice has already crossed the firewall
at t = x but Bob has not, as shown in Figure 1.
We ask: If Alice and Bob are initially entangled, how

does Alice’s crossing the firewall a↵ect this entangle-
ment?

Methods.— We assume each detector to be a two-
level system. We denote the respective energy gaps
by ⌦⌫ , the ground states by |g⌫i and the excited states
by |e⌫i. The monopole moment operators are then
µ⌫(⌧) = �+

⌫ e
i⌦⌫⌧ + ��

⌫ e
�i⌦⌫⌧ , where the nonvanishing

matrix elements of the raising and lowering operators �±
⌫

are he⌫ |�+

⌫ |g⌫i = hg⌫ |��
⌫ |e⌫i = 1.

For each of the the individual detectors we may intro-
duce a two-by-two matrix representation in which (sup-
pressing the detector index)

|gi =
✓
1
0

◆
, |ei =

✓
0
1

◆
, µ(⌧) =

✓
0 e�i⌦⌧

ei⌦⌧ 0

◆
. (10)
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Figure 2. Negativity N of the Alice-Bob final state as a func-
tion of xA with the detector trajectories shown in Figure 1 and
with the sharp switching functions (17), for R = 4, T = 1.8,
⌦A = ⌦B = 1, �A = �B = 0.01 and ⇤ = 10�2 ⌧ ⌦⌫ . Before
the interaction N = 1

2 , and the evolution causes the entan-
glement to degrade. When xA > T , Alice does not cross the
firewall during her detector’s operation and the entanglement
degradation is identical to that in Minkowski vacuum. When
xA < T , Alice does cross the firewall, and the entanglement
degradation depends non-monotonically on xA.

qualitative explanation for this phenomenon could be an
interesting challenge.

One might suspect some of the properties of the graph
in Figure 2 to be specific to, and perhaps artefacts of, the
sharp switch-on and switch-o↵. To alleviate this suspi-
cion, Figure 3 shows results from a similar analysis with
Gaussian switching functions,

�A(⌧) = �B(⌧) = e�(⌧�⌧0)
2/�2

, (18)

where the parameters ⌧
0

and � are chosen as described in
the figure caption to provide a smooth approximation to
the sharp switching of Figure 2. The detectors now oper-
ate for�1 < ⌧ < 1, but the tails of the Gaussians are so
small that this noncompact support of the Gaussian does
not bring in new complications. The curve in Figure 3 is
smoother but retains the qualitative features, including a
regime where the firewall allows Alice and Bob maintain
their entanglement better than in Minkowski vacuum.
The conclusions drawn above from the sharp switching
results hence apply also to the Gaussian switching.

Conclusions.— Our main conclusion runs contrary
to the vision of a firewall as a violently singular sur-
face [3]: the Rindler firewall has only a modest e↵ect
on the entanglement between two inertial Unruh-DeWitt
detectors when one of the detectors crosses the fire-
wall. There is even a parameter range in which the fire-
wall slows down the entanglement degradation, compared
with the degradation that takes place in Minkowski vac-
uum.

Given that the Rindler firewall models the quantum
field theory correlations in a black hole firewall [8], our
results suggest that a similar conclusion should hold for

Figure 3. As in Figure 2 but with the Gaussian switching
functions (18), with � = 1 and t0 = 2, so that the Gaus-
sian switching provides a smooth approximation to the sharp
switching of Figure 2. The firewall e↵ect on Alice’s detector
is now significant for xA . 3. The qualitative properties are
as in Figure 2, including the non-monotonicity in xA.

black hole firewalls at the early stages of the Hawking
evaporation where the gravitational backreaction on the
metric is not yet significant. As the Unruh-DeWitt de-
tector captures the essential features of the interaction
between atoms and the electromagnetic field [11, 12], the
conclusion should further extend to systems of matter of
which we and our experimental apparatus are built.

In summary, the key message of this paper is that we
cannot think of a young firewall as a surface of cata-
clysmic events that erases all information about matter
that crosses the firewall. If the matter is correlated with
the outside world, these correlations will not be signifi-
cantly altered by the crossing. We may not know why
the chicken crossed the young firewall, but it did get to
the other side, with most of its memories intact.

The broader implication is that the prospective capa-
bility of an old, fully-developed firewall to solve the black
hole information loss paradox must hinge on the detailed
gravitational structure of the firewall. A quantitative de-
scription of this gravitational stucture is at present still
conspicuously lacking.
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When the initial state has the form ⇢
0

= ⇢
d,0 ⌦ ⇢�,0,

where ⇢
d,0 and ⇢�,0 are respectively the initial state of

the two-detector subsystem and the initial state of the
field, and assuming that ⇢�,0 satisfies

Tr�
�
�(x)⇢�,0

�
= 0 , (4)

we find that the final state of the two-detector subsystem
is

⇢
d,T = Tr�(⇢T ) = ⇢

d,0 + ⇢
(2)

d,T +O(�3) , (5a)
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where W [x⌫(⌧), x⌘(⌧ 0)] denotes the pullback of the
Wightman function on the detectors’ worldlines,

W [x⌫(⌧), x⌘(⌧
0)] = Tr�

�
�
�
x⌫(⌧)

�
�
�
x⌘(⌧

0)
�
⇢�,0

�
. (6)

Detectors with a Rindler firewall.— We now
specialise to (1 + 1)-dimensional Minkowski spacetime,
ds2 = �dt2+dx2 = �du dv, where u = t�x and v = t+x.

We take � to be massless and ⇢�,0 to be the Rindler
firewall state described in [8]. The one-point function of
⇢�,0 satisfies (4), as follows by extending the Wightman
function discussion given in [8] to the one-point function.
The Wightman function of ⇢�,0 is

WF (x, x
0) = Tr�

�
�(x)�(x0)⇢�,0

�

= W
0

(x, x0) +�W (x, x0) , (7)

whereW
0

is the Wightman function in the Minkowki vac-
uum |0ih0| and �W is the correction due to the firewall.
For W

0

we have

W
0

(x, x0) =
�1

4⇡
log

⇥
⇤2(✏+ i�u)(✏+ i�v)

⇤
, (8)

where �u = u � u0, �v = v � v0, the positive constant
⇤ is an infrared cuto↵, the logarithm takes its principal
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Figure 1. Spacetime diagram of the two-detector systems with
the Rindler firewall. The dashed line at t = x is the firewall.
The solid lines are the worldlines of the Alice detector and
the Bob detector, switched on at t = 0 and o↵ at t = T > 0.
Alice crosses the firewall during the detectors’ operation (at
t = Tf = xA in the diagram) but Bob does not.

branch and ✏ ! 0
+

. The full expression for �W (x, x0) is
lengthy but reduces for v > 0 and v0 > 0 to

�W (x, x0) =
1

4⇡

h
⇥(u)✓(�u0) + ✓(�u)✓(u0)

i

⇥
⇣
log(⇤ |u� u0|) + i

⇡

2
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⌘
. (9)

In words, (8) and (9) show that when x and x

0 are
to the future of the left-going Rindler horizon t = �x
but on opposite sides of the right-going Rindler horizon
t = x, WF (x, x0) is missing the contribution from the
right-moving part of the field. This absence of correla-
tions across the Rindler horizon models the absence of
correlations that is argued to develop dynamically in an
evaporating black hole spacetime [3].

For the detectors in the presence of the firewall, we
take the worldline of detector A (Alice) to be at x =
xA > 0 and the worldline of detector B (Bob) to be at
x = xA + R, where R > 0 is the spatial separation. The
detectors are switched on at t = 0, and they are switched
o↵ at a time when Alice has already crossed the firewall
at t = x but Bob has not, as shown in Figure 1.
We ask: If Alice and Bob are initially entangled, how

does Alice’s crossing the firewall a↵ect this entangle-
ment?

Methods.— We assume each detector to be a two-
level system. We denote the respective energy gaps
by ⌦⌫ , the ground states by |g⌫i and the excited states
by |e⌫i. The monopole moment operators are then
µ⌫(⌧) = �+

⌫ e
i⌦⌫⌧ + ��

⌫ e
�i⌦⌫⌧ , where the nonvanishing

matrix elements of the raising and lowering operators �±
⌫

are he⌫ |�+

⌫ |g⌫i = hg⌫ |��
⌫ |e⌫i = 1.

For each of the the individual detectors we may intro-
duce a two-by-two matrix representation in which (sup-
pressing the detector index)

|gi =
✓
1
0

◆
, |ei =

✓
0
1

◆
, µ(⌧) =

✓
0 e�i⌦⌧

ei⌦⌧ 0

◆
. (10)
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Figure 2. Negativity N of the Alice-Bob final state as a func-
tion of xA with the detector trajectories shown in Figure 1 and
with the sharp switching functions (17), for R = 4, T = 1.8,
⌦A = ⌦B = 1, �A = �B = 0.01 and ⇤ = 10�2 ⌧ ⌦⌫ . Before
the interaction N = 1

2 , and the evolution causes the entan-
glement to degrade. When xA > T , Alice does not cross the
firewall during her detector’s operation and the entanglement
degradation is identical to that in Minkowski vacuum. When
xA < T , Alice does cross the firewall, and the entanglement
degradation depends non-monotonically on xA.

qualitative explanation for this phenomenon could be an
interesting challenge.

One might suspect some of the properties of the graph
in Figure 2 to be specific to, and perhaps artefacts of, the
sharp switch-on and switch-o↵. To alleviate this suspi-
cion, Figure 3 shows results from a similar analysis with
Gaussian switching functions,

�A(⌧) = �B(⌧) = e�(⌧�⌧0)
2/�2

, (18)

where the parameters ⌧
0

and � are chosen as described in
the figure caption to provide a smooth approximation to
the sharp switching of Figure 2. The detectors now oper-
ate for�1 < ⌧ < 1, but the tails of the Gaussians are so
small that this noncompact support of the Gaussian does
not bring in new complications. The curve in Figure 3 is
smoother but retains the qualitative features, including a
regime where the firewall allows Alice and Bob maintain
their entanglement better than in Minkowski vacuum.
The conclusions drawn above from the sharp switching
results hence apply also to the Gaussian switching.

Conclusions.— Our main conclusion runs contrary
to the vision of a firewall as a violently singular sur-
face [3]: the Rindler firewall has only a modest e↵ect
on the entanglement between two inertial Unruh-DeWitt
detectors when one of the detectors crosses the fire-
wall. There is even a parameter range in which the fire-
wall slows down the entanglement degradation, compared
with the degradation that takes place in Minkowski vac-
uum.

Given that the Rindler firewall models the quantum
field theory correlations in a black hole firewall [8], our
results suggest that a similar conclusion should hold for

Figure 3. As in Figure 2 but with the Gaussian switching
functions (18), with � = 1 and t0 = 2, so that the Gaus-
sian switching provides a smooth approximation to the sharp
switching of Figure 2. The firewall e↵ect on Alice’s detector
is now significant for xA . 3. The qualitative properties are
as in Figure 2, including the non-monotonicity in xA.

black hole firewalls at the early stages of the Hawking
evaporation where the gravitational backreaction on the
metric is not yet significant. As the Unruh-DeWitt de-
tector captures the essential features of the interaction
between atoms and the electromagnetic field [11, 12], the
conclusion should further extend to systems of matter of
which we and our experimental apparatus are built.

In summary, the key message of this paper is that we
cannot think of a young firewall as a surface of cata-
clysmic events that erases all information about matter
that crosses the firewall. If the matter is correlated with
the outside world, these correlations will not be signifi-
cantly altered by the crossing. We may not know why
the chicken crossed the young firewall, but it did get to
the other side, with most of its memories intact.

The broader implication is that the prospective capa-
bility of an old, fully-developed firewall to solve the black
hole information loss paradox must hinge on the detailed
gravitational structure of the firewall. A quantitative de-
scription of this gravitational stucture is at present still
conspicuously lacking.
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Rev. Lett. 110, 101301 (2013).

[3] A. Almheiri, D. Marolf, J. Polchinski, and J. Sully, Jour-
nal of High Energy Physics 2013, 62 (2013).

[4] L. Susskind, (2013), arXiv:1301.4505 [hep-th].

Sudden Switching

4

Figure 2. Negativity N of the Alice-Bob final state as a func-
tion of xA with the detector trajectories shown in Figure 1 and
with the sharp switching functions (17), for R = 4, T = 1.8,
⌦A = ⌦B = 1, �A = �B = 0.01 and ⇤ = 10�2 ⌧ ⌦⌫ . Before
the interaction N = 1

2 , and the evolution causes the entan-
glement to degrade. When xA > T , Alice does not cross the
firewall during her detector’s operation and the entanglement
degradation is identical to that in Minkowski vacuum. When
xA < T , Alice does cross the firewall, and the entanglement
degradation depends non-monotonically on xA.

qualitative explanation for this phenomenon could be an
interesting challenge.
One might suspect some of the properties of the graph

in Figure 2 to be specific to, and perhaps artefacts of, the
sharp switch-on and switch-o↵. To alleviate this suspi-
cion, Figure 3 shows results from a similar analysis with
Gaussian switching functions,

�A(⌧) = �B(⌧) = e�(⌧�⌧0)
2/�2

, (18)

where the parameters ⌧
0

and � are chosen as described in
the figure caption to provide a smooth approximation to
the sharp switching of Figure 2. The detectors now oper-
ate for�1 < ⌧ < 1, but the tails of the Gaussians are so
small that this noncompact support of the Gaussian does
not bring in new complications. The curve in Figure 3 is
smoother but retains the qualitative features, including a
regime where the firewall allows Alice and Bob maintain
their entanglement better than in Minkowski vacuum.
The conclusions drawn above from the sharp switching
results hence apply also to the Gaussian switching.
Conclusions.— Our main conclusion runs contrary

to the vision of a firewall as a violently singular sur-
face [3]: the Rindler firewall has only a modest e↵ect
on the entanglement between two inertial Unruh-DeWitt
detectors when one of the detectors crosses the fire-
wall. There is even a parameter range in which the fire-
wall slows down the entanglement degradation, compared
with the degradation that takes place in Minkowski vac-
uum.
Given that the Rindler firewall models the quantum

field theory correlations in a black hole firewall [8], our
results suggest that a similar conclusion should hold for
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Figure 3. As in Figure 2 but with the Gaussian switching
functions (18), with � = 1 and t0 = 2, so that the Gaus-
sian switching provides a smooth approximation to the sharp
switching of Figure 2. The firewall e↵ect on Alice’s detector
is now significant for xA . 3. The qualitative properties are
as in Figure 2, including the non-monotonicity in xA.

black hole firewalls at the early stages of the Hawking
evaporation where the gravitational backreaction on the
metric is not yet significant. As the Unruh-DeWitt de-
tector captures the essential features of the interaction
between atoms and the electromagnetic field [11, 12], the
conclusion should further extend to systems of matter of
which we and our experimental apparatus are built.

In summary, the key message of this paper is that we
cannot think of a young firewall as a surface of cata-
clysmic events that erases all information about matter
that crosses the firewall. If the matter is correlated with
the outside world, these correlations will not be signifi-
cantly altered by the crossing. We may not know why
the chicken crossed the young firewall, but it did get to
the other side, with most of its memories intact.

The broader implication is that the prospective capa-
bility of an old, fully-developed firewall to solve the black
hole information loss paradox must hinge on the detailed
gravitational structure of the firewall. A quantitative de-
scription of this gravitational stucture is at present still
conspicuously lacking.
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Figure 2. Negativity N of the Alice-Bob final state as a func-
tion of xA with the detector trajectories shown in Figure 1 and
with the sharp switching functions (17), for R = 4, T = 1.8,
⌦A = ⌦B = 1, �A = �B = 0.01 and ⇤ = 10�2 ⌧ ⌦⌫ . Before
the interaction N = 1

2 , and the evolution causes the entan-
glement to degrade. When xA > T , Alice does not cross the
firewall during her detector’s operation and the entanglement
degradation is identical to that in Minkowski vacuum. When
xA < T , Alice does cross the firewall, and the entanglement
degradation depends non-monotonically on xA.

qualitative explanation for this phenomenon could be an
interesting challenge.

One might suspect some of the properties of the graph
in Figure 2 to be specific to, and perhaps artefacts of, the
sharp switch-on and switch-o↵. To alleviate this suspi-
cion, Figure 3 shows results from a similar analysis with
Gaussian switching functions,

�A(⌧) = �B(⌧) = e�(⌧�⌧0)
2/�2

, (18)

where the parameters ⌧
0

and � are chosen as described in
the figure caption to provide a smooth approximation to
the sharp switching of Figure 2. The detectors now oper-
ate for�1 < ⌧ < 1, but the tails of the Gaussians are so
small that this noncompact support of the Gaussian does
not bring in new complications. The curve in Figure 3 is
smoother but retains the qualitative features, including a
regime where the firewall allows Alice and Bob maintain
their entanglement better than in Minkowski vacuum.
The conclusions drawn above from the sharp switching
results hence apply also to the Gaussian switching.
Conclusions.— Our main conclusion runs contrary

to the vision of a firewall as a violently singular sur-
face [3]: the Rindler firewall has only a modest e↵ect
on the entanglement between two inertial Unruh-DeWitt
detectors when one of the detectors crosses the fire-
wall. There is even a parameter range in which the fire-
wall slows down the entanglement degradation, compared
with the degradation that takes place in Minkowski vac-
uum.
Given that the Rindler firewall models the quantum

field theory correlations in a black hole firewall [8], our
results suggest that a similar conclusion should hold for

Figure 3. As in Figure 2 but with the Gaussian switching
functions (18), with � = 1 and t0 = 2, so that the Gaus-
sian switching provides a smooth approximation to the sharp
switching of Figure 2. The firewall e↵ect on Alice’s detector
is now significant for xA . 3. The qualitative properties are
as in Figure 2, including the non-monotonicity in xA.

black hole firewalls at the early stages of the Hawking
evaporation where the gravitational backreaction on the
metric is not yet significant. As the Unruh-DeWitt de-
tector captures the essential features of the interaction
between atoms and the electromagnetic field [11, 12], the
conclusion should further extend to systems of matter of
which we and our experimental apparatus are built.

In summary, the key message of this paper is that we
cannot think of a young firewall as a surface of cata-
clysmic events that erases all information about matter
that crosses the firewall. If the matter is correlated with
the outside world, these correlations will not be signifi-
cantly altered by the crossing. We may not know why
the chicken crossed the young firewall, but it did get to
the other side, with most of its memories intact.

The broader implication is that the prospective capa-
bility of an old, fully-developed firewall to solve the black
hole information loss paradox must hinge on the detailed
gravitational structure of the firewall. A quantitative de-
scription of this gravitational stucture is at present still
conspicuously lacking.
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Two max. entangled Unruh-DeWitt detectors

We cannot think of a firewall as a surface of cataclysmic events 
that erases all information about matter that crosses the firewall.  
If the matter is correlated with the outside world, these 
correlations will not be significantly altered by the crossing.
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Firewalls	
  do	
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  work	
  as	
  adver7sed!

Why did the chicken cross the firewall?

We do not know… but it did get to the other side, with most of its memories intact.

More to come: signalling across firewalls.

Thanks!!
Eduardo Martin-Martinez, Jorma Louko.
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