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Motivation

2

Entanglement and Entanglement Entropy
have emerged as two of the most important
players in the recent attempts to reconstruct
spacetime from quantum information.



Motivation
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Some of the more interesting holographic
setups involve probe objects.

• quantum liquids with unusual
correlations

• quantum Hall systems
• EPR pairs



Motivation:
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Question: How to calculate holographic
entanglement entropies for probe branes?



Probe branes
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Probe Branes
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(AK, Katz)

L=curvature radius of background geometry

Newton’s
constant

Probe brane tension

d+1 dimensional
spacetime

n+1 dimensional
worldvolume

N2

N



Probe Branes
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(AK, Katz)

L=curvature radius of background geometry

Newton’s
constant

N2

Gravity classical
dominant physics at O(N2)
loops contribute at O(1)

“the glue”



Probe Branes
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(AK, Katz)

L=curvature radius of background geometry

Probe brane tension N

Worldvolume equations classical
dominant flavor physics at O(N)
loops contribute at O(1)

“the quarks”



Probe Branes
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(AK, Katz)

L=curvature radius of background geometry

Newton’s
constant

Probe brane tension

N2

N

No gravitational backreaction from probe brane
O(N2) physics unaffected by order N physics
O(N) physics: wordvolume of flavor brane and leading order backreaction
at O(1) all hell breaks lose: 2nd order backreaction, glue loops, quark loops 



Example: Flavor Branes
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(AK, Katz)

(picture from CLMRW-review, 2011)



Example: holographic EPR

1111

anti-quark quark

pair created  in 
background electric field

|Ψ > =
1
2

| ↑↓> −| ↓↑>



Example: Holographic EPR
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(Jensen, AK)

Worldsheet = ER bridge (finite distance, no causal connection)



Holographic EPR
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(Xiao)

Tension ~ 𝜆𝜆

𝑁𝑁2 ≫ 𝜆𝜆 ≫ 1



SEE for the holographic EPR pair
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A B

𝑆𝑆𝐸𝐸𝐸𝐸 = �𝜆𝜆 3

quark not just a single parton, 𝝀𝝀 gluons part of quasi-particle



Holographic EPR pair:
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Susskind, Maldacena: ER=EPR

what does “=“ mean?

• Our construction makes clear that this is holographic 
duality

• “=“ means: has mathematically equivalent description in 
terms of

• can be generalized to include dynamical gravity (RS)
• can be generalized to entangled Hawking pairs. 

(last two: Jensen, AK, Robinson)



Backreaction?
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Backreaction of the quark sector
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There are some new quantities in the flavor 
sector (order N physics) that are manifestly only 
due to probe fields (e.g. chiral condensate); no 
backreaction.

How far can I get without ever having to
solve Einstein’s equations?

Does backreaction ever matter at order N?



Backreaction?
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(see e.g. AK, O’Bannon, Thompson)

Generically, at order N backreaction matters.

𝑆𝑆 = 𝑁𝑁2𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑁𝑁 𝑆𝑆𝑝𝑝𝑔𝑔𝑝𝑝𝑝𝑝𝑝𝑝

𝛿𝛿𝛿 ∝ 𝐺𝐺𝑁𝑁 𝑇𝑇𝜇𝜇𝜇𝜇 ∝ �1
𝑁𝑁 𝛿

𝜀𝜀 = 𝑁𝑁2𝜀𝜀𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑁𝑁 (𝜀𝜀𝑝𝑝𝑔𝑔𝑝𝑝𝑝𝑝𝑝𝑝 + 𝛿𝛿𝜀𝜀𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
𝛿𝛿𝑔𝑔

h)

glue and quark sector

backreaction suppressed….

𝛆𝛆 = �𝛅𝛅𝛅𝛅 𝛅𝛅𝒈𝒈𝟎𝟎𝟎𝟎 = energy density … but enters at order N



Backreaction
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(see e.g. AK, O’Bannon, Thompson)

Exception: the free energy = on-shell action.

𝑆𝑆 = 𝑁𝑁2𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑁𝑁 𝑆𝑆𝑝𝑝𝑔𝑔𝑝𝑝𝑝𝑝𝑝𝑝

𝛿𝛿𝛿 ∝ 𝐺𝐺𝑁𝑁 𝑇𝑇𝜇𝜇𝜇𝜇 ∝ �1
𝑁𝑁 𝛿

𝜔𝜔 = 𝑁𝑁2𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑁𝑁 (𝑆𝑆𝑝𝑝𝑔𝑔𝑝𝑝𝑝𝑝𝑝𝑝 + 𝛿𝛿𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
𝛿𝛿𝑔𝑔

h)

glue and quark sector

backreaction suppressed

contribution due to backreaction vanishes by equations of motion!

=0



Backreaction: Entropy
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(see e.g. AK, O’Bannon, Thompson)

𝜔𝜔 = 𝑁𝑁2𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑁𝑁 𝑆𝑆𝑝𝑝𝑔𝑔𝑝𝑝𝑝𝑝𝑝𝑝
good news! all equilibrium properties can be calculated
without ever having to deal with backreaction!!!!

Including thermal entropy:
backreaction

honest calculation:
calculate change in horizon area

but “cheat” works!

𝑠𝑠 = −
𝜕𝜕𝜔𝜔
𝜕𝜕𝑇𝑇

or



Backreaction: EE
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But for the EE we are stuck with needing leading order 
backreaction to even get order N contribution. 

backreaction

𝑆𝑆𝐸𝐸𝐸𝐸 = 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝐸𝐸𝐸𝐸 +
𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿
4𝐺𝐺

O(N2) O(N)

O(1/N)

O(1/N2)



Exceptions: no backreaction
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Casini, Huerta, Myers:  • spherical entangling surface
• conformal field theory

Jensen, O’Bannon:

EE thermal entropy
on hyperboloid

conformal map

still applies for conformal flavors
(massless quarks!) on conformal defect

In this case cheat still applies.



CHM:
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=
(CHM)

𝑑𝑑𝑠𝑠2 =
−𝑑𝑑𝑡𝑡2 + 𝑑𝑑𝑥𝑥2 + 𝑑𝑑𝑧𝑧2

𝑧𝑧2
𝑑𝑑𝑠𝑠2 = −𝛿 𝛿𝛿 𝑑𝑑𝑡𝑡2 + 𝑑𝑑𝐻𝐻2 + �𝑑𝑑𝛿𝛿2

𝛿(𝛿𝛿)

h(r)= 𝛿𝛿2 − 1
T=0 T=1/2π

Casimir stress tensor on H appears thermal
Entangling surface = boundary of H



Jensen-O’Bannon Calculation
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=

(CHM)

Free energy  = C0 volume of spacetime
= -(C0/d) rh

d vol(H)

O(N2): constant

d/dT



Jensen-O’Bannon Calculation
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=

(CHM)O(N2):

area law



Jensen-O’Bannon Calculation
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=

(JO)

Free energy  ~ volume of spacetime

O(N):

d/dT

(for n<d, 1/(d-1) replaced by 1/d for n=d)



Jensen-O’Bannon Calculation
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=

(JO)O(N):
“flavor central charge”
number of DOFs on defect

Has exactly the functional form
of a spherical entangling surface
in an n+1 dimensional CFT.



Limitations of Jensen – O’Bannon
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• Massless flavors only

• No worldvolume gauge fields

no topological phases
not applicable to probe branes realizing
quantum Hall effect, topological insulators, ….

no novel compressible quantum liquids
no holographic quantum liquid 



Beyond conformal defects?
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A)  Systematically include backreaction
(Chang, AK)

B) Generalize CHM to LM
(Uhlemann, AK)

C) Find full backreaction.
has been done for smeared D3/D7 by Kontoudi/Policastro
and for some more general probes by Jones/Taylor

Agree! (modulo
RG ambiguities)



EE from backreaction
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(Chang, AK)



EE double integral
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Note that to get correction to EE, we don’t need
to calculate the full backreaction.

• only need leading 1/N correction
• only need to know how it affects

minimal area.

→ dramatic simplification.



EE from backreaction
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tension
O(N) constant

minimal
area

probe
worldvolume

double integral

gravitational
Green’s function



EE for probe branes.

33“stress tensor” of
minimal area

“stress tensor” of
probe brane

= gravitational interaction between two energy distributions



EE for probe branes - derivation

34

δgμν
linearized backreaction

δg

G



EE for probe branes - derivation
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δgμνcorresponding change in minimal area:

change of 
embedding=0 by eom.



Comments
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• Works in time-dependent backgrounds
Hubeny, Rangamani, Takayanagi:  

Minimal area →  Extremal area

same action!

use retarded Green’s function for G



Comments
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• Works with higher curvature corrections

• minimal area requirement gets replaced with more 
general surface

• still follows from an action principle, action defining 
the surface is area + curvature corrections

• still allows definition of Tmin
μν



Properties
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No secondary backreaction!

D7 probe
T0 ~ N

G ~ 1/N2

δg ~ 1/N

axion ~ 1/N

dilaton ~ 1/N

backreact
on
metric?



Secondary Backreaction
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G ~ 1/N2axion ~ 1/N

IIB-action = 1/G (axion)2

stress tensor = N2 (axion)2 ~ O(1)

δg ~ G (stress tensor) ~ 1/N2

secondary backreaction is subleading



Exception:
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G ~ 1/N2axion ~ 1/N

IIB-action = 1/G (Axion + axion)2

stress tensor = … + N2 (axion Axion) ~ O(N)

δg ~ G (stress tensor) ~ 1/N

secondary backreaction is important if brane
sources field that has non-trivial background

Axion ~ 1

turned on in background



Exception: Examples
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C4

D3 probe

• D6 flavor brane in ABJM
(ABJM has RR 2-form background)

•

But: D5 with Frt is fine. Sources C4,
but orthogonal to background.



Properties

Backreaction in internal space irrelevant.

trace reversed Einstein:

makes co-dimension 2 special• codimension 2 minimal surface
• wrapping internal manifold

Entangling surface is:

and hence does not source internal tensor modes



Properties

Backreaction in internal space irrelevant.

Instead of integrating over D-dim product space,
can do integral in (d+1) dimensional spacetime
with “effective” probe stress tensor.

internal space



No internal O(N) backreaction:

EE for D3/D7 (AdS5 x S3) =
EE for spacetime filling probe in AdS5

EE for D3/D5 (AdS4 x S2) =
EE for co-dim 1 probe in AdS5=
Randall-Sundrum brane

very simple to get 
fully backreacted
metric!



Simplest (non-trivial) example:
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Massive flavors via D3/D7:



EE from Generalized 
Gravitational Entropy
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(Uhlemann, AK)



Probe EE from GGE
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Lewkowycz and Maldacena give a “derivation”
of the RT prescription:

• Uses replica trick
• Generalizes CHM: EE derived from

on-shell action.
• Probe brane can be included.



LM procedure, step 1
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𝑆𝑆𝐸𝐸𝐸𝐸 = lim
𝑛𝑛→1

𝑛𝑛2 𝜕𝜕𝑛𝑛𝑆𝑆(𝑛𝑛)

On-shell action on suitable
geometry.

For spherical entangling surface, background
AdS this geometry is hyperbolic black hole
(CHM) even for massive flavor branes.



LM procedure, step 2
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𝑑𝑑
𝑑𝑑𝑛𝑛

=
𝑑𝑑 𝑔𝑔𝜇𝜇𝜇𝜇
𝑑𝑑𝑛𝑛

𝛿𝛿
𝛿𝛿𝑔𝑔𝜇𝜇𝜇𝜇

property of the
n-covering geometry
(hyperbolic bh)

allows use of
equations of motion!



LM procedure, step 2
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𝑑𝑑
𝑑𝑑𝑛𝑛

𝑆𝑆 𝑛𝑛 = ∫ 𝐸𝐸𝐸𝐸𝐸𝐸 + boundary term

This gives the
RT entropy

Option 1: Follow this same procedure including
the brane. EOM only satisfied if linearized 
backreaction is accounted for. Gives back double
integral.



Using LM for probe EE
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Option 2:  Use non-backreacted metric

• Calculate full on-shell action for probe
• Does not reduce to boundary terms
• But no backreaction needed

(Uhlemann, AK)



Using LM for EE
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• Need probe embedding in hyperbolic bh
• Obtained from CHM change of coordinates
• But: constant mass in flat space turns into 

position and time dependent mass
• On shell action complicated 3d integral.

Upshot: gives same answer, but ends up being
at least as cumbersome as double integral.

𝑑𝑑𝑠𝑠2 → Ω2𝑑𝑑𝑠𝑠2 𝑚𝑚 → Ω−1 𝑚𝑚



Application: flavored N=4 
at finite density.
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(Chang, Uhlemann, AK)



EE for strongly correlated fluid
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Holographic quantum fluid (D3/D7 at finite density):

• Finite density = wordvolume electric field

• analytic solution for probe brane known

• Interesting properties

(Kobayashi, Mateos, Matsuura, Thomson, Myers) 

(O’Bannon, AK) 



Properties of holographic D7 fluid
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o finite T=0 entropy density

o Heat capacity scales as T6

o zero sound mode

o moduli space w/o SUSY

o perturbatively stable

(Son, Starinets, AK) 

(Son, Starinets, AK) 

(Ammon, Jensen, Kim, O’Bannon; Chang, AK) 

(Ammon, Erdmenger, Lin, O’Bannon, Shock) 

(Kobayashi, Mateos, Matsuura, Thomson, Myers) 



The long lived large N fluid
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Many of these properties are presumably
large N artifacts.

V=0
1/N corrections

V ~ 1/N

But  instability lifetime ~ 1/N: 𝑋𝑋 = 𝑋𝑋0 𝛿𝛿𝑡𝑡/𝑁𝑁



EE of D7 fluid
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Results (double integral; strip and ball):

1) 𝑞𝑞 𝑙𝑙3 ≪ 1: small entangling region

sphere

ball



EE of D7 fluid
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Results (double integral; strip and ball):

1) 𝑞𝑞 𝑙𝑙3 ≪ 1: small entangling region

T universal, shape dependent.
Perfect agreement with general results.

(Bhattacharya, Nozaki, Takayanagi, Ugajin) 



EE of D7 fluid
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Results (double integral; strip and ball):

1) 𝑞𝑞 𝑙𝑙3 ≫ 1: large entangling region

Volume law for EE!!!

Is this just the T=0 grounds state entropy?



EE for D7 fluid
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No! EE density larger than thermal entropy density

EE density shape dependent.

ground state

strip

ball



EE at finite temperature (strip)
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EE at finite temperature (strip)
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take out transverse volume
volume law = linear in l



EE at small temperature (strip)
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black solid line:
thermal entropy density
governs largest regions



EE at finite temperature (strip)
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small region
universal temperature



EE at finite temperature (strip)
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𝒒𝒒−𝟏𝟏/𝟑𝟑 ≪ 𝒍𝒍 ≪ 𝟏𝟏/𝑻𝑻
volume law with s  > s thermal



EE for D7 fluid
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Volume law for large regions:

• very unusual for local QFT
• long range entanglement?
• volume worth of entangled Bell pairs?

Begs for better understanding.



Conclusions
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Conclusions

 EE can be calculated for probe branes
 Two methods: double integral or GGE
 In general double integral appears easier
 EE for holographic quantum liquid exhibits 

puzzling volume law.
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