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Quantum Entanglement

“spukhafte Fernwirkung” =
spooky action at a distance

Einstein-Podolsky-Rosen Paradox:
• properties of pair of photons connected,

no matter how far apart they travel 

• different subsystems are correlated through
global state of full system

compare:

Entangled!!

No Entanglement!!



Entanglement Entropy

• in QFT, typically introduce a (smooth) boundary or entangling
surface which divides the space into two separate regions

• integrate out degrees of freedom in “outside” region
• remaining dof are described by a density matrix

A
B

calculate von Neumann entropy:

• general tool; divide quantum system into two parts and use
entropy as measure of correlations between subsystems



RG flows:

mathematical apparatus that allows systematic investigation
of the changes of a physical system as viewed at different
distance/energy scales”

Renormalization Group:



Zamolodchikov’s c-theorem (1986):

• for unitary, Lorentz-inv. QFT’s in two dimensions, there exists
a positive-definite real function of the coupling constants       :

• renormalization-group (RG) flows can seen as one-parameter
motion

in the space of (renormalized) coupling constants
with beta-functions as “velocities” 

1. monotonically decreasing along flows:

2. “stationary” at fixed points :              :

3. at fixed points, it equals central charge of corresponding CFT



BECOMES

Zamolodchikov's C-function adds a dimension to RG flows:



●

Simple consequence for any RG flow in d=2:

Zamolodchikov's C-function adds a dimension to RG flows:

●

●
●



Entanglement & c-theorem?

• Preskill ‘99: “Quantum information and physics: some future directions”

QI may provide new insight into RG flows & c-theorem 

• Casini & Huerta ‘04: reformulate c-theorem for d=2 RG flows in
terms of entanglement entropy using unitarity, Lorentz inv.
and strong subaddivity inequality:



(Holzhey, Larsen & Wilczek)

(Casini & Huerta ‘04)
RG flows Meet Entanglement:

• for d=2 CFT: (Calabrese & Cardy)

• c-theorem for d=2 RG flows can be established using unitarity, 
Lorentz invariance and strong subaddivity inequality:

isolate central charge with:

• in general, define:

appears as proxy for energy scale



(Casini & Huerta ‘04)
RG flows Meet Entanglement:

• interval A with endpoints e1 and e2 on some Cauchy surface

•• A

• by causality,     
describes physics
in causal diamond

• by unitarity, S(e1,e2) independent of details of Cauchy surface

• by translation invariance (in vacuum), S(e1,e2) only depends on
proper distance between e1 and e2



(Casini & Huerta ‘04)
RG flows Meet Entanglement:

• apply strong subaddivity inequality in following geometry:

•

• •

•

SSA



RG flows Meet Entanglement:

• define:

• for d=2 CFT: 
(Calabrese & Cardy)

• hence it follows that:

(Holzhey, Larsen & Wilczek)

• Casini & Huerta ‘04: reformulate c-theorem for d=2 RG flows in
terms of entanglement entropy using unitarity, Lorentz inv.
and strong subaddivity inequality:



and

• do any of these obey a similar “c-theorem” under RG flows?   ie,

d=2:

d=4:

C-theorems in higher dimensions??

• in 4 dimensions, have three central charges:

-theorem:  proposed by Cardy (1988)

• holographic field theories with Einstein gravity dual
(Freedman et al ‘99; Giradello et al ‘98)

• numerous nontrivial examples, eg, perturbative fixed points (Osborn ‘89),
SUSY gauge theories (Anselmi et al ‘98; Intriligator & Wecht ‘03)

where

• progress stalled; no proof found; . . . .

• past few years have seen a resurgence of interest and rapid progress



hT¹
¹ i = Bi (Weyl invariant )i ¡ 2(¡ )d=2 A (Euler density)d + r ¹ K ¹

C-theorems in higher dimensions??
• RG flows in generalized holographic models with higher curvatures

where

found new holographic c-theorem:

agrees with Cardy’s general conjecture!!

(RM & Sinha ‘10)

gravitational couplings
d = spacetime dimension of boundary theory

• precisely reproduces coefficient of A-type anomaly:

(Henningson & Skenderis; Nojiri & Odintsov; Blau, Narain & Gava;
Imbimbo, Schwimmer, Theisen & Yankielowicz)

• compare trace anomaly for CFT’s in even dimensions  (Deser & Schwimmer)

What about odd d??



Entanglement C-theorem conjecture:
• identify ‘central charge’ with universal contribution in entanglement
entropy of ground state of CFT across sphere Sd-2 of radius R:

• for RG flows connecting two fixed points

unified framework to consider c-theorem for odd or even d

for even d

for odd d

connect to Cardy’s conjecture:              for any CFT in even d

(RM & Sinha)

behaviour discovered for holographic model but conjectured
that result applies generally (outside of holography)

V
V



• consider SEE of d-dimensional CFT for
sphere Sd–2 of radius R

F-theorem: (Jafferis, Klebanov, Pufu & Safdi)

• examine partition function for broad classes of 3-dimensional
quantum field theories on three-sphere (SUSY gauge theories,
perturbed CFT’s & O(N) models)

• in all examples, F= – log Z(S3)>0 and decreases along RG flows

• coincides with entanglement c-theorem (Casini, Huerta & RM)

conjecture:

• also naturally generalizes to higher odd d

V
V

• conformal mapping: 



F-theorem:
• coincides with entanglement c-theorem (Casini, Huerta & RM)

• consider SEE of d-dimensional CFT for sphere Sd–2 of radius R

• conformal mapping: 

curvature ~ 1/R  and thermal state:

• stress-energy fixed by trace anomaly – vanishes for odd d!

• upon passing to Euclidean time with period         :
for any odd d

• focusing on renormalized or universal contributions, eg,



• hence          decreases monotonically and 
• with SSA and “continuum” limit             

(Casini & Huerta ‘12)Entanglement proof of F-theorem:
• F-theorem for d=3 RG flows established using unitarity, Lorentz
invariance and strong subadditivity

• geometry more complex than d=2: consider many circles 
intersecting on null cone

• define:
• for d=3 CFT: S(R) = 2¼R

±
c0 ¡ 2¼a3

• no corner contribution from intersection in null plane



A beautiful story but why is universal term in SEE universal?

for even d

for odd d

• QFT intution: log divergences define physical cuts but finite p
polynomials subject to renormalization ambiguities

even d seems okay but odd d might be problematic?

c a

recall d=2 CFT: c

d=4 CFT:

(Calabrese & Cardy)
(Holzhey, Larsen & Wilczek)

(Solodukhin)

(RCM & Sinha)d=2m CFT (with symmetry):

(Schwimmer & Theisen)



S(R) = 2¼R c0

±
+ m c1 ¡ 2¼a3

Why is universal term in SEE universal?

(Schwimmer & Theisen)

for even d

for odd d

• QFT intution: log divergences define physical cuts but finite p
polynomials subject to renormalization ambiguities

even d seems okay but odd d might be problematic?

• shifting                                     constant term polluted by UV data

sure but no scales in CFT, so no scale     !!
scales from RG flow can appear in final SEE!!

(eg, Hertzberg & Wilczek; Banerjee)

S(R) = 2¼R
±

c0 ¡ 2¼a3



• in regulators, tension between Lorentz inv. and unitarity

Why is universal term in SEE universal?

(Schwimmer & Theisen)

for even d

for odd d

• QFT intution: log divergences define physical cuts but finite p
polynomials subject to renormalization ambiguities

even d seems okay but odd d might be problematic?

• shifting                                     constant term polluted by UV data

sure but no scales in CFT, so no scale     !!
scales from RG flow can appear in final SEE!!

(eg, Hertzberg & Wilczek; Banerjee)

latter emerge in            limit, but regulator exposed in SEE



(Liu & Mezei)

• divergences determined by local geometry of entangling surface
with covariant regulator, eg,

• can isolate finite term with appropriate manipulations, eg,
d=3:

d=4:

c-function of
Casini & Huerta

(unfortunately, holographic experiments indicate             are
not good C-functions for d>3  ‒ not monotonic)

“Renormalized” Entanglement Entropy:

• if      is physical, we should be able to use any regularization
which defines the continuum QFT

• approach demands special class of regulators: “covariant”
is result artifact of choosing “nice” regulator??



S(R) = 2¼R
±

c0 ¡ 2¼a3

• consider defining       in presence of lattice regulator

• circumference always uncertain to 

always polluted by UV

R

R ! R0 = R + ®±;



always polluted by UV

• circumference always uncertain to 

R

• consider defining       in presence of lattice regulator

considering finer resolution,
can not repair problem!!

Seems we need to go beyond SEE??

R ! R0 = R + ®±;

S(R) = 2¼R
±

c0 ¡ 2¼a3



Criteria to properly establish c-theorem:

1. C-function must be dimensionless, well-defined quantity,
which is independent of the regularization scheme

computable with any regulator

2.   C-function must be intrinsic to fixed point of interest
independent of details of RG flows

3.   C-function must decrease monotonically along any RG
flows connecting a UV fixed point to an IR fixed point

• SEE seems to fail to satisfy criteria 1 & 2

• alternate choice? alternate measure of entanglement?



Mutual Information:
• another measure of entanglement between two systems

• for non-intersecting regions A and B:

• finite! UV divergences in S(A) and S(B) canceled by S(A U B)

• can be defined without reference to SEE (Araki; Narnhofer)

• bounds correlators between A and B (Wolf, Verstraete, Hastings & Cirac)

• if c-function defined with mutual information
criterion 1 will automatically be satisfied
criterion 2 & 3 will be satisfied with further care



C-function from Mutual Information:

• consider following geometry:

or

I (A; B ) = S(A) + S( ¹B ) ¡ S(A [ B )
• using                       for pure state:S(A) = S( ¹A)

two disks ~ R narrow annulus

• work in continuum: (    and     are macro scales)



C-function from Mutual Information:

• consider following geometry:

or

• mutual information takes form:

• work in continuum: 

I (A; B ) = 2¼R
µ

~c0

"
+ ~c1

¶
¡ 4¼~a3 + O("=R)

(    and     are macro scales)



C-function from Mutual Information:

• work with renormalized QFT in continuum limit
• mutual information “regulates” entanglement entropy of disk

• Strategy:

distance

UV CFT

IR CFT

( R À " À À ±)

𝜹𝜹𝜺𝜺

1/𝑚𝑚𝑖𝑖

R
G

 flow

geometric
regulator

probe
scale 𝑹𝑹

I (A; B ) = 2¼R
µ

~c0

"
+ ~c1(mi )

¶
¡ 4¼~aI R

3

I (A; B ) = 2¼R ~c0

"
¡ 4¼~aU V

3



C-function from Mutual Information:

• consider following geometry:

or

• mutual information takes form:

I (A; B ) = 2¼R
µ

~c0

"
+ ~c1

¶
¡ 4¼~a3 + O("=R)

• ambiguity:

(    and     are macro scales)

• criterion 2? is      intrinsic to fixed point??~a3

• work in continuum: 



UV independence of    :
• can we choose     such that     is independent of higher scales?

~a3

• consider probing at IR critical point where m, lowest mass scale
in RG flow:: 

• correlations near boundary nonconformal

• high energy contribution to I(A,B): 
local and extensive 

• can we choose     to eliminate    ??
• for general strip (with small curvatures):

• must vanish if reflection symmetry

~a3

𝟐𝟐/𝒎𝒎



C-function from Mutual Information:

• consider following geometry:

or

• mutual information takes form:

• in regime: 

• fixing             ensures      is intrinsic to fixed point
criteria 1 and 2 are satisfied!!

I (A; B ) = 2¼R
µ

~c0

"
+ ~c1

¶
¡ 4¼~a3 + O("=R)



C-function from Mutual Information:
• consider following geometry:

• in regime: 

• calculate for a free scalar on
a square lattice:

2¼
~a 3

(                            , result good to 15%)

4¼~a3 ' 0:110

(4¼a3)scal ar = 1
4

µ
log2 ¡ 3³ (3)

2¼2

¶

' 0:127



Criteria to properly establish c-theorem:

1. C-function must be dimensionless, well-defined quantity,
which is independent of the regularization scheme

computable with any regulator

2.   C-function must be intrinsic to fixed point of interest
Independent of details of RG flows

3.   C-function must decrease monotonically along any RG
flows connecting a UV fixed point to an IR fixed point

• defining      with mutual information & fixing             ensures
criteria 1 and 2 are satisfied; must still consider criterion 3

• monotonic flow follows as in entropic proof of F-theorem



• hence          decreases monotonically and 

• with SSA and “continuum” limit             

(Casini & Huerta ‘12)Entanglement proof of F-theorem:
• F-theorem for d=3 RG flows established using unitarity, Lorentz
invariance and strong subadditivity

• geometry more complex than d=2: consider many circles 
intersecting on null cone

• define:
• for d=3 CFT: S(R) = 2¼R

±
c0 ¡ 2¼a3

• no corner contribution from intersection in null plane



Entanglement proof of F-theorem:
• key ingredients:
a) unitary & Lorentz invariant regularization of EE defined on

regions with smooth boundaries except for “null cusps”
b)   regulated EE satisfies strong subaddivity for sets whose

union and intersection only generates more “null cusps”
c)   wiggly circles have EE which approaches that of circle with

same perimeter as the number of null cusps goes to ∞

null cusp: corner lying in null plane
~t1 ¡ ~t2 = ~v with ~v ¢~v = 0



• mutual information approach satisfy these key ingredients? yes
Entanglement proof of F-theorem:

• consider region 𝐴𝐴 with smooth boundary Γ

• expand boundary: Γ± = Γ ± 1
2
𝜀𝜀 𝑠𝑠 �𝒏𝒏(𝑠𝑠)

• regulated EE: property of A;
independent of framing

eg, for circle
I 0(A) = 2¼R ~c1(mi ) ¡ 4¼~a3

𝐼𝐼 𝐴𝐴+,𝐴𝐴− = 𝑐̃𝑐0 ∮Γ �𝑑𝑑𝑑𝑑
𝜀𝜀(𝑠𝑠) + 𝐼𝐼0 𝐴𝐴 + 𝑂𝑂(𝜀𝜀)



• additional contributions for
null cusps characterized by
two local invariants:

Entanglement proof of F-theorem:

• consider region 𝐴𝐴 with smooth boundary Γ with null cusps  

• expand boundary: Γ± = Γ ± 1
2
𝜀𝜀 𝑠𝑠 �𝒏𝒏(𝑠𝑠)

𝐼𝐼 𝐴𝐴+,𝐴𝐴− = 𝑐̃𝑐0 ∮Γ �𝑑𝑑𝑑𝑑
𝜀𝜀(𝑠𝑠) + 𝐼𝐼0 𝐴𝐴 + ∑𝑓𝑓 𝑞𝑞1𝑖𝑖 , 𝑞𝑞2𝑖𝑖 + 𝑂𝑂(𝜀𝜀) 

𝒒𝒒𝟏𝟏 = �𝒎𝒎 ⋅ �𝒕𝒕𝟏𝟏 𝒒𝒒𝟐𝟐 = �𝒎𝒎 ⋅ �𝒕𝒕𝟐𝟐

• mutual information approach satisfy these key ingredients? yes



• additional contributions for
null cusps characterized by
two local invariants:

Entanglement proof of F-theorem:

• consider region 𝐴𝐴 with smooth boundary Γ with null cusps  

• expand boundary: Γ± = Γ ± 1
2
𝜀𝜀 𝑠𝑠 �𝒏𝒏(𝑠𝑠)

• 𝐼𝐼0 𝐴𝐴 still satisfies SSA:

𝐈𝐈𝟎𝟎 𝐀𝐀 + 𝐈𝐈𝟎𝟎 𝐁𝐁 ≥ 𝑰𝑰𝟎𝟎 𝑨𝑨 ∪ 𝑩𝑩 + 𝑰𝑰𝟎𝟎(𝑨𝑨 ∩ 𝑩𝑩)

𝒒𝒒𝟏𝟏 = �𝒎𝒎 ⋅ �𝒕𝒕𝟏𝟏 𝒒𝒒𝟐𝟐 = �𝒎𝒎 ⋅ �𝒕𝒕𝟐𝟐

𝐼𝐼 𝐴𝐴+,𝐴𝐴− = 𝑐̃𝑐0 ∮Γ �𝑑𝑑𝑑𝑑
𝜀𝜀(𝑠𝑠) + 𝐼𝐼0 𝐴𝐴 + ∑𝑓𝑓 𝑞𝑞1𝑖𝑖 , 𝑞𝑞2𝑖𝑖 + 𝑂𝑂(𝜀𝜀) 

• mutual information approach satisfy these key ingredients? yes



Criteria to properly establish c-theorem:

1. C-function must be dimensionless, well-defined quantity,
which is independent of the regularization scheme

computable with any regulator

2.   C-function must be intrinsic to fixed point of interest
Independent of details of RG flows

3.   C-function must decrease monotonically along any RG
flows connecting a UV fixed point to an IR fixed point

• defining      with mutual information & fixing             ensures
criteria 1 and 2 are satisfied; must still consider criterion 3

• monotonic flow follows as in entropic proof of F-theorem
have properly established F-theorem in d=3



Beyond d=3:
• is there entropic proof of c-theorem in higher dimensions?

need a new idea?

higher dim. intersections lead
to subleading divergences
which trivialize SSA inequality

●



• with            , only contribution to 4pt amplitude with null dilatons:

(Komargodski & Schwimmer; 
see also: Luty, Polchinski & Rattazzi)

d=4 a-theorem and Dilaton Effective Action

• couple theory to “dilaton” (conformal compensator) and organize
effective action in terms of 

• analyze RG flow as “broken conformal symmetry”

diffeo X Weyl invariant:

• follow effective dilaton action to IR fixed point, eg,

: ensures UV & IR anomalies match

• dispersion relation plus optical theorem demand: 

(Schwimmer
& Theisen)

Beyond d=3:

• no entanglement in sight? 



• is there entropic proof of c-theorem in higher dimensions?

• can c-theorems be proved for higher dimensions? eg, d=5 or 6

(Elvang, Freedman, Hung, Kiermaier, RM & Theisen; Elvang & Olson)
dilaton-effective-action approach requires refinement for d=6

need a new idea?

higher dim. intersections lead
to subleading divergences
which trivialize SSA inequality

●

• hybrid approach proposed (Solodukhin): still needs development

again, entropic approach needs a new idea

Beyond d=3:

• d=4 a-theorem proved with more “standard” QFT techniques
(Komargodski & Schwimmer)



d=3 entropic C-function not always stationary at fixed points
(Klebanov, Nishioka, Pufu & Safdi)

Conclusions and Questions:

• how much of Zamolodchikov’s structure for d=2 RG flows
extends higher dimensions?

same already observed for d=2; special case or generic?
need a better C-function?

• entanglement lends new insights into c-theorems
• using mutual information, properly established d=3 F-theorem



Zamolodchikov c-theorem (1986):

• for unitary, Lorentz-inv. QFT’s in two dimensions, there exists
a positive-definite real function of the coupling constants       :

• renormalization-group (RG) flows can seen as one-parameter
motion

in the space of (renormalized) coupling constants
with beta-functions as “velocities” 

1. monotonically decreasing along flows:

2. “stationary” at fixed points :              :

3. at fixed points, it equals central charge of corresponding CFT



• does scale invariance imply conformal invariance beyond d=2?

d=3 entropic C-function not always stationary at fixed points
(Klebanov, Nishioka, Pufu & Safdi)

Conclusions and Questions:

• how much of Zamolodchikov’s structure for d=2 RG flows
extends higher dimensions?

• what can entanglement/quantum information really say about
RG flows, holography or nonperturbative QFT? 

(Luty, Polchinski & Rattazzi; 
Dymarsky, Komargodski, Schwimmer & Theisen)

• further lessons: RG flows and entanglement          holography?

“more or less” in d=4

same already observed for d=2; special case or generic?
need a better C-function?

• entanglement lends new insights into c-theorems
• using mutual information, properly established d=3 F-theorem

SSA            NEC (Bhattacharya etal; Lashkari et al; Lin etal) 
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