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Introduction

Recently, (Renyi) entanglement entropy 
((R)EE) has a center of wide interest in a broad 
array of theoretical physics.

• It is useful to study the distinctive features of 
various quantum state in condensed matter 
physics. (Quantum Order Parameter)

• (Renyi) entanglement entropy is expected to 
be an important quantity which may shed 
light on the mechanism behind the AdS/CFT 
correspondence .(Gravity ↔ Entanglement)
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Introduction

Recently, (Renyi) entanglement entropy 
((R)EE) has a center of wide interest in a broad 
array of theoretical physics.

• In the lattice gauge theory, it is expected that 
entanglement entropy is a new order 
parameter which helps us study QCD more. 

• (R)EE is expected to be entropy in non-
equilibrium system.In this work, we investigate the time dependent 

property of (Renyi) entanglement entropy.



• Definition of Entanglement Entropy 

We divide the total Hilbert space into A and B:                                        .         

The reduced density matrix         is defined by                                 .

This means the D O F in B are traced out.    

The entanglement entropy is defined by von Neumann entropy       .

on a certain time slice

A

B

∂A

The Definition of (Renyi) Entanglement Entropy

(Renyi)  Entanglement Entropy (REE) 

n→1

Entanglement Entropy (EE) 



Motivation
Previously, we studied the property of EE for the subsystem whose 
size (l) is very small in d CFT.

l  << (The Excess of Energy Density) ,
- d

This temperature is universal.
zl
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We study the property of (R)EE for

1. The size of subsystem is infinite.

A half of the total system:

Setup

zl
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2. A state is defined by acting a local operator 

on the ground state:    

Setup

x1

t

x  = - l1

t=-t

AB



We study the property of (R)EE for

1. The size of subsystem is infinite.

A half of the total system:

2. A state is defined by acting a local operator 

on the ground state:    

Setup

x1

t

x  = - l
1

t=-t

AB



We would like to focus on the time evolution of the (R)EE.

We define             the excess of the (R)EE: 

: (R)EE for        ( Reduced Density Matrix for                              )

: (R)EE for the ground state      

Motivation
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Setup

We consider d+1 dim. QFT.

We prepare a locally excited state:

We investigate the time evolution of 

(Renyi) entanglement entropies.

We choose a half space (          ) as 

subsystem A.

We will compute                         .

x1

t

x  = - l1

t=-t

01 x

AB

Replica Method !!

The reduced density matrix



How to compute

1. We compute                                            by path-integral:

2.  After that, we perform an analytic continuation  to real time.
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X12n-Point Function
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2-Point Function
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A

τ

X1

A

τ

X1

A
τ

X1

Replica Method

This formula holds for any local operators

in general QFT in any dimensions.



Field Theory 

1.    Free massless scalar field theory
Phys.Rev.Lett. 112 (2014) 111602 MN, Tokiro Numasawa, Tadashi Takayanagi

JHEP 1410 (2014) 147 MN



Example

We consider free massless scalar field theory in d+1 dim. 

Especially, we focus on that in 4 dim.

We act a local operator on the ground state:

.

We measure the (Renyi) 

entanglement entropies at t=0. x1

t

x  = - l1

t=-t

AB

Time evolution!!



Example

Let’s compute              for

in  4-dimensional free massless scalar field theory. 

Green function: 



Example

Green function: 

We compute 

by using Green function.

After that, we perform

analytic continuation to 

real time.



Example

Green function: 

We compute 

by using Green function.

After that, we perform

analytic continuation to 

real time.



Time Evolution of
S A

)2(

t
l



Time Evolution of
S A

)2(

t

An entangled pair appears.

Each of pair is included in 

the region B.

l



Time Evolution of
S A

)2(

t

In this region, two quanta 

is included in A and B 

respectively .  

l



Time Evolution of
S A

)2(

t

In this region, two quanta 

is included in A and B 

respectively .  

Entanglement between quanta can contribute to           .

l



Time Evolution of
S A
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t

Subsystem 

= a half of the

total space
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Time Evolution of
S A

)2(

t

Subsystem 

= a half of the

total space

approaches

Constant!!l= Entanglement between Quasi-particles



Time Evolution of
S A

)2(

t
l

for                                        approaches constants! !
(log2)

We call them the (Renyi) entanglement entropies of  
operators.

(Renyi) entanglement entropy of local operators

= Entanglement between Quasi-particles
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Entangled Pair Interpretation

We derive               for                                                     from            

the entangled pair interpretation.

We decompose        into the left moving mode and 

the right moving mode,

At late time, the d o f in the region B can be identified with 

the d o f of left moving mode. 

AB
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Entangled Pair Interpretation

Under this decomposition: 

Tracing out 

the d.o.f in BThey agree with the results which we obtain by the 

Replica trick (See My paper!!).
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quantum entanglement!!

for any dimension.



Generalize Results

We defined the (Renyi) entanglement entropies of operators by 

the late time values of            .

The (Renyi) entanglement entropies of  specific operators (             ) 

which are composed of single species operator are given by

for any dimension.

Large k,



Time Evolution of 

t
l

for locally excited states
obey causality.

approach constant
((Renyi) entanglement entropy

of local operators)                             

(Renyi) entanglement entropy of local operators

= Entanglement between Quasi-particles



Field Theory 

3.   Free massless fermionic field theory 

arXiv:1507.04352 [hep-th] MN, Tokiro Numasawa, Shunji Matsuura

Work in Progress Pawel Caputa, MN, Tokiro Numasawa

4.   Charged Renyi Entanglement Entropy (CREE)
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Fermionic Field Theory

Theory: 

4-dimentional free massless fermionic field theory

Setup:

x1

t

x  = - l1

t=-t
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An Excited State:

Excess of Renyi Entanglement Entropy (t→∞):

Reduced Density Matrix



Time Evolution of  

l=10

t

Green:

Red:

Blue:

Orange: Log2



B A

Example: 

Creates anti- particle.

t

Green:

Red:

Blue:

Orange: Log2
l=10



B A

Example: 

Creates anti- particle.

It can not propagate parallel
to the left!

Anti- particle can not propagate here!!

l=10

t

Green:

Red:

Blue:

Orange: Log2



B A

Example: 

The existence probability of
anti-particle is continuous.

Anti- particle exists here with low probability.

Anti- particle exists here with high probability.

t

Green:

Red:

Blue:

Orange: Log2
l=10



t

Green:

Red:

Blue:

Orange: Log2

Example: ,        :Existence probability in A, B.

,        Maximally 

Entangled



t

Green:

Red:

Blue:

Orange: Log2

Example: 

,        Maximally 

Entangled

,        :Existence probability in A, B.,        :Existence probability in A, B.

(Anti-)particle does not propagate 
with equivalent probability.

Answer
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Quasi-Particle Interpretation

• Decomposition into left movers and right movers
Anti- Particle

Particle



Exotic Quantization

Exotic Quantization in 4d

(Anti-)particles do not propagate with equivalent probability. 

We need to impose exotic quantization condition. 



Exotic Quantization

Exotic Quantization in 4d
Boost



Deformed Quantization
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Deformed Quantization

Example

Exotic Quantization in 4d

Consistent!!
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Exotic Quantization

D:Spacetime Dimension

Exotic Quantization in General dim.
(Work in Progress)

We are studying physical meaning of this term.



CREE in 2d CFT

• Statistical mechanics

• C(R)EE

We might study quantum entanglement in more detail.

Alexandre Belin, Ling-Yan Hung, Alexander Maloney, 
Shunji Matsuura, Robert C. Myers, Todd Sierens

JHEP 1312 (2013) 059



CREE in 2d CFT

Theory: 2d Massless Fermionic Field Theory

Excited State:

At the late time(t→∞), 



Physical Interpretation
Under quasi-particle decomposition 

Reduced Density Matrix:
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Physical Interpretation
Under quasi-particle decomposition 

Reduced Density Matrix:

Consistent!!



Log2

Charge dependence of

or

Product State Consistent!!



Field Theory 
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in Large N limit
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Field Theory Side

We consider large N free massless U(N) scalar field theory

We act                                                        on the ground state.

N

1n

Finite!!

,2J

N 1n : Incorrect Limit

N1n : Correct limit

、 : Adjoint scalar



Field Theory Side

In large N limit, for J=2

If we think 1/n as an effective temperature ,

n=1 : Deconfinement Phase

n≠1: Confinement Phase



At the late time (t>>l  ) (                       )

・
Conformal dim. of inserted operator 

We can not take the von Neumann limit (n→1).

AdS/CFT
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Central charge

Quasi-particle interpretation breaks down!!
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At the late time (t>>l  ) (               )

・ , (2dCFT)

AdS/CFT

Central charge

Quasi-particle interpretation breaks down!!

z

x1

A

l-do not approach constant.

in holographic field theory is totally different 
from those in free field theory .



Summary 

Free  Scalar Field Theory 

We defined the (Renyi) entanglement entropies of local 
operators. 

-They characterize local operators from the viewpoint of 
quantum entanglement. 

• These entropies of the operators (constructed of single-
species operator) are given by the those of binomial 
distribution.

-The results we obtain in terms of entangled pair agree with 
the results we obtain by replica method.



Summary 

In Fermionic Field Theory

• We compute           for various locally excited state.        

- They are given by constant values in the late time.    

Some of them depend on the representation(spin).     

• When we interpret results in terms quasi-particle picture,

we should impose exotic quantization condition.

(Because (anti-)particle does not propagate in any directions    

with equivalent probability.) 

・ We compute CREE for locally excited state.



Summary 

AdS/CFT correspondence
• To take n → 1 limit does not commute with taking N → ∞ limit.

- After taking large N limit, we can not take n → 1 (EE for excited state diverge.).

• In AdS/CFT correspondence,              does not approach some constants.

- In large N expansion, the leading term of                 for n=1 

is proportional to  the conformal dim. of operators which act on

the ground state.   

- In large N expansion, the leading term of                 for n=1 

is proportional to  central charge.



Future Problems

• In non-relativistic case, the time evolution of

• In gauge field theory,            (collaborate with Naoki Watamura,     

Pawel Caputa)

• The (Renyi) entanglement entropies of operators in the interacting 
field theory . 

• Physical meaning of the coefficient of gamma matrices.

• Excesses of CREE in AdS/CFT 


