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1) Introduction

The AdS/CFT and more generally holography argues
“Quantum Gravity = Quantum Many-body Systems”’.

on Md+2 on 0Md+1
Then one may ask what are the most elementary
degrees of freedom in the correspondence ?

= One attractive possibility is that

quantum entanglement explains the degrees of freedom.

“Emergence of spacetime from Qubits”’
< Tensor Networks



Entanglement Entropy (EE)
Htot:HA®HB9 ptot:“{j><‘lj’

Pa= 1151001 = 8, =-Trp,logp,].

= The best measure of quantum entanglement

EE measures
(1) How many EPR pairs can be extracted.
(D=2
(2) Active degrees of freedom. (~central charges)
(3) A quantum order parameter.(~topological order)
(4) a geometry of quantum many-body system.
(“holography)



(I) Area law of EE [Bombelli-Koul-Lee-Sorkin 86, Srednicki 93]

EE in QFTs includes UV divergences.

In a d+1 dim. QFT (d>1) with a UV relativistic fixed point,
the leading term of EE at its ground state behaves like

_ Area(0A)

d—1
E

54

where g is a UV cutoff (i.e. lattice spacing).

+ (subleading terms),

[d=1: log div.]

Intuitively, this property is understood like:

Most strongly entangled ——




(ii) Eternal BH in AdS/CFT [Maldacena 00]
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(iii) Holographic Entanglement Entropy (HEE)
[Ryu-TT 06; a derivation: Casini-Huerta-Myers 11, Lewkowycz-Maldacena 13]

S = Min Area(y,)
Oy 4=04 4GN

(We omit the time direction.)

7a is the minimal area surface
(codim.=2) such that

0A=0y, and A~y, .

homologous z>¢ (UV cutoff)
Note: In time-dependent spacetimes, d2—dP+ 5 22
we need to take extremal surfaces. ds’ =R?. =1 !

[Hubeny-Rangamani-TT 07] 22



The HEE suggests the following novel interpretation:
“A spacetime in gravity
= Collections of bits of quantum entanglement”

_ Area(y,) _Area(y,)

S
A 4G, L

This entanglement/geometry
A duality may work

for any surfaces
[Bianchi-Myers 12]

V-4
Planck length

= Manifestly realized in the proposed connection
between AdS/CFT and tensor networks | [Swingle 09]



(2) Review of Tensor Networks

(2-1) Tensor Network [see e.g. Cirac-Verstraete 09(review)]

Tensor network states
= Efficient variational ansatz for the ground state
wave functions in quantum many-body systemes.
[A tensor network diagram = A wave function]

= An ansatz should respect the correct
quantum entanglement of ground state.

~Geometry of Tensor Network



Ex. Matrix Product State (MPS) [DMRG: white 92,...,

Rommer-Ostlund 95,..]

) TIB g Maﬁ(a)

o =1,2,...,7,
| 0,0, o,] o=Tori.
Spin chain

W)= D TiM(c)M(c,)--M(c,)]|0,0,,:,0,)

n

01,05, +,0, n Spins



MPS with finite £ does not have enough EE to describe
1d quantum critical points (2d CFTs) :

S, <2logy (<<logL~S{").

S, <N, -logy,

In general,

N. . = min[#Intersections of y ,|.




(2-2) MERA

MERA (Multiscale Entanglement Renormalization Ansatz):

= An efficient variational ansatz for CFT ground states.
[Vidal 05]

To increase entanglement in a CFT, we add (dis)entanglers.

gitary transf.
Neen 2 spins



III

MERA in a more official’”’ diagram

Coarse-graining = Isometry

/ [T ]Zbc [T ]bcd =0,

UsS AN A=Coarse-graining Ob d _ a d
B=disentangler c -
logL| S, oc Min[#links]

. \/\ oc log L

0, 0, 0; 0805 0, 0,040, 0,,0u0, 0, 0];015 0, 017 Oy U=O \

A (length L) U = agreeswith
resultsin 2d CFT!



Cf. Bulk State construction

= Low energy bulk excitations (e.g. bulk scalars)
[Exact holographic mapping: Xiao-liang Qi 13]

ldea: Keep the network and introduce bulk states
[tips of red vertical bonds]

i NG




@ Tensor Networks and AdS/CFT

(3-1) AdS/MERA proposal [swingle 09]
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The idea: Tensor Network of MERA ( I scale inv.)
= a time slice of AdS space

Qualitative evidences

(i) Real space RG = radial evolution in AdS
— something we usually expect in AdS/CFT.

(i) The bound of EE in MERA: §, <Min[N, |-logy.

If this is saturated, it seems to agree with the HEE

S, __ 1 Min|Area(y, )]

4G V4



In this way, AdS/MERA seems to work qualitatively.

However, if we look more closely, several questions arise
[see e.g. Bao-Cao-Carroll-Chatwin-Davies-Hunter-Jones-Pollack-Remmen 15]

(a) Locality of bulk AdS: The disentangler carries

O(N2) Qubits.
= d Locality only at the AdS radius (not Planck scale)....
(b) Conformal invariance is not clear = Lattice artifact ?

(c) Why the EE bound is saturated ?
= If disentanglers ~ large N Random tensors, that can be
true. But this is not clear.

(e) 3 RG causal structure in MERA
= No causal structure on the time slice of AdS ?



(3-2) Refinement 1: Integral geometry
[Czech, Lamprou, McCandlish, Sully 15]

Focus on AdS3/CFT2. Keep MERA network as it is.
A metric for MERA: EE for the interval A=[x-L,x+L]

S,(x—-L,x+L) :£10g2L,

3

2 72 2

N dsz—a SA(u,v)dudV: c —dL ;rdx
Ouov 12 L
— 2d deSitterspace
& &
(i.e. MERA=dS#AdS) Integr
M Transf. k,, Yo
Kinematical

[=Rob Myers’s talk on Thu.] Space =~ MERA network



(3-3) Refinement 2: Perfect Tensor Network
[Pastawski-Yoshida-Harlow-Preskill 15]

Consider tensors which are unitary or isometry

w.r.t any legs, called perfect tensors.

[BU|k reconstruction < quantum error COFI‘ECtiOﬂS]
[Almheiri-Dong-Harlow 14]
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= The EE bound is saturated for single intervals.



@ cMERA and AdS/CFT [Refinement 3]

[Haegeman-Osborne-Verschelde-Verstraete 11, see also Nozaki-Ryu-TT 12]

(4-1) cMERA formulation
To remove lattice artifacts, take a continuum limit of MERA:

fD(u)} :P-exp(—ij: ds 1%(5)). ).

State at scale u IR state

K (u): (dis)entangler at length scale~ &-¢™

‘ Q> : unentangled state in real space

What is this state ?
— S, =0 forany A.
4 y A mp We will come back later.



Relation to (discrete) MERA

-0

u=-3 > A=Coarse-graining

B=disentangler

N 6 _________ e

o, O, 0, 0p0; 0. 0,0, O o O n :OV
1 92 Y3 -{3(5 7 Ug O9 0,110, O-HWIS O O17 O'lsu

A (length L) u

By adding dummy states |0> _*® , we keep the dimension
of Hilbert space for any u to be the same.
= We can formally describe the real space RG

by a unitary transformation.



Example: cMERA for a (d+1) dim. Free Scalar Theory

Hamiltonian: H = % J dk* [7(k)m(—k)+ (k2 +m’ Yo(k)o(—k)].
Ground state ‘O> : ak‘0> = ().

I

. Q> =0, ( a, = VM. P(x)+ N ﬂ(x)j,

ie. [Q=]]l0), = §,=0.

IR state: a

CMERA: K (1) = é [k [T (ke 1M Ja;a’, +(he.))
where I'(x)isa cut off function: I'(x) =8(1-]|x).

1 8214
s)=—- , (form=0, y(u)=1/2.
x(s) TS ( x(u) )




(4-2) Boundary State as Gravity Dual of Point-like Space
[Miyaji-Ryu-Wen-TT 14]

Q. A general construction of the IR states |Q> in CFTs ?

Arecument 1

We can realize disentangled states (IR states |(Q)>)
< Trivial (Point-like) spaces

by performing a (infinitely) massive deformation:

H =H_., +m'"% jdde(x),

— ‘Q> = the ground state of H .

m-—» 0



Now we apply the idea of quantum quenches.

= For t<0, we assume the ground state of the massive
Hamiltonian Hm. Then at t=0, we suddenly change the

Hamiltonian into Hcrr as in [Calabrese-Cardy 05].

t
In this setup, the state at t=0 is identified |

with the boundary state:
W, (t=0))=|Q)=|B).

We may introduce the UV cut off like
‘Qm> oce_H/m-‘B> .



Boundary states in CFTs (assume 2d CFT)

A boundary state (Ishibashi state) : |B>

= A state which gives a conformally invariant boundary condition:

L L, |B)=o0.

k

).

In terms of the Virasoro algebra: ‘B> = Z,; ];>R

where f = (k k,,.....) represent

£ () o)

= A maximally entangled state
between left and right moving sectors !

= But, the real space entanglement is quite suppressed !



Argument 2: Correlation functions of local operators

B |

Boundary

Boundary - -

@106+ 06)I2) 1

@) N

l

= When (xi-xj)>>6, there is no correlations !

= Disentangled |



Argument 3: Direct calculation of EE

For the regularized IR state ‘Q> = e 1 ‘ B >,

we can compute the EE explicitly in free fermion CFTs:
[Ugajin-TT 10]

S, = glog é+ [Finite], (o — 0).
g

Thus we can set SA ~ 0 when O ~ ¢.

Note: Boundary states can still have non-zero finite
topological entanglement.



(4-3) Aspects of cMERA

 No lattice artifacts

* Choice of K(u) is flexible - In principle, we can realize
not only the continuum limit of original MERA but also
those of perfect tensor networks.

But, we do not know K(u) precisely except free CFTs.

 We can compute information metrics or ch(u)\cb(u + du )>\
, though the evaluation of EE is not straightforward.

 We can treat excited states in a straightforward way.



Conformal Transformation in cMERA for 2d CFT

The generators which preserve a time slice
of AdS3 are given by [ = Z_n —L .
The SL(2,R) action which maps p=0 to the

2(1,-1)

point (p,9) is given by g(p,¢)=e'"e?

The cMERA flow
‘O> = Pexp(— ijo [%(u)du)‘ Bo>- is transformed by SL(2,R)

0)=Pex| ~if K, ,(wdu ] B,

where K, ,, (1) = g(p,4)- K1) g(p,9)




CFT dual of excited states by bulk local field
[Miyaji-Numasawa-Shiba-Watanabe-TT 15 (see also Nakayama-Ooguri 15)]

We can show that the CFT state dual to an bulk excited state
@y (P ¢)‘ O>bulk obtained from the bulk scalar field @, is

given by (in the large N limit) :

l(Lo +Zo)

‘\IJ (p,¢)> (,0,¢) 2 : e_éH . ‘J>
CFT i(.)tl.n%t off SLTZ%)

IshibashiState

Note: this a s with Kabat-Lifsehytz-Lowe’s preScription.

Why ? Planck scale cut off
Similar to cMETA IR state
- cMERA flow ? (Full Virasoro Ishibashi state)

[cf. Verlinde 15]



(5 Surface/State Correspondence [Miyaji-TT 15]
(5-1) Basic Principle

Consider Einstein gravity on a d+2 dim. spacetime M.
We conjecture the following correspondence:

2 : an d dim. convex space-like surface in M
t which is closed and homologically trivial

D(X))eH,

A pure state




More generally,
the quantum state dual to a convex surface 2 is

a mixed state p(2)

if 2 is open or topologically non-trivial.

Md+2

2

On the other hand, the zero size limit of Z corresponds to
the trivial state | Q> with no real space entanglement.



This surface/state correspondence is realized in the
“perfect” tensor network description of holography.

This is not well-defined
in discrete MERA.
But this is well-defined in the
“perfect network” in

Coarse
-graining




(5-2) Entanglement Entropy

We can naturally generalize HEE for our setup :

Hy=H,®Hy, p;=Tr[pZ)],

Area( yi )
4G,

= §;=

2A
>=xAU2JB




(5-3) Effective Dimension

By dividing the surface 2 into infinitesimally small
pieces 2=UAi , we easily find:

ZSZ B Area(Z)

1 N
We interpret this as the log of effective dim. for 2
. eﬁf
log[dimH ;" ]

This is because ,Oi is expected to be maximally entangled
(except the dummy states).



(5-4) Inner Products and Information Metric

Another intriguing physical quantity is an inner product

(Z|=') between two surfaces.
o> 2 u+du

ds® = R’du® + g, (x,u)dx"dx". @

Here focus on the two surfaces separated infinitesimally.
= Consider an information distance between them

The information metric is defined as

1= D )| ® (u+du))| = (du)’ -G



If the metric is x-independent, we have

G(B) j‘ dxd\/g(x)(K )2 Vanisheson

extremal surfaces
Extrinsic curvature

Example 1: a flat spacetime = G (B) =0.

[u-Translational inv. = |® (u + a’u )) =@ (u))]

Example 2: an AdS spacetime [Nozaki-Ryu-TT 12]:

G(B) — N Vd

uu deg. d
E

e™ = Agrees with cMERA for CFT,,,



(5-5) Diffeomorphism in cMERA and SS-correspondence
Wedefine | = —L ., (|n]=23,..)

0)=Pexf ~i[’ K, (du)B,)

R, ()= g)R w)g )" +0,8)- g(u)",
where g(u)=exp>. & )], | with &(0)=0

The dual state of a surface Zu

expected in SS-correspondence
is given by the form:
‘CD(ZL{)> = Pexp(— ij Igg (S)dS)‘BO>.

u
— Q0




®) Conclusions
e Quantum entanglement represents a geometry

of guantum state in many-body systems.

Tensor network = Entanglement = geometry
Boundary states < trivial (point-like) space

AdS/MERA duality looks like a zero-th order
approximation. = We need some refinement.

(1) Integral geometry ?
(2) Perfect tensor network ? = Surface/State corresp.
(3) continuum limit (cMERA) ?



So many future problems

* Planck scale locality in Tensor Networks ?

* Tensor networks for gauge theories ?

* Derivation of Einstein eq. (how to describe
strongly coupled gauge theories ?)

* Determinations of K(u) in cMERA ?

e Perfect Tensor models for real CFTs ?

Holography for more general spacetimes and TNs ?
* Applications to black hole information problem ?



