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Mathematics, rightly viewed, possesses not only truth, but
supreme beauty cold and austere, like that of sculpture,
without appeal to any part of our weaker nature, without the
gorgeous trappings of painting or music, yet sublimely pure,
and capable of a stern perfection such as only the greatest art
can show. The true spirit of delight, the exaltation, the sense
of being more than Man, which is the touchstone of the
highest excellence, is to be found in mathematics as surely as
in poetry.

Bertrand Russell
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Just a month ago, there was an announcement by NSF,
Caltech and MIT that they have found gravitational wave that
was predicted by Einstein 100 years ago.

This is a triumph of the theory of Einstein who proposed that
gravity should be looked at as effects of curvature of
space-time. My title of Geometry and Physics is very much
related to this proposal of Einstein.
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Before this theory of Einstein, scientists followed the view
point of Newton: the space is static and gravity allows action
at a distance simultaneously.
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When special relativity was discovered at 1905 by Einstein,
with the helps by several people including Lorentz and
Poincaré, it was found that physical information should not
travel faster than light, and the principle of action at a
distance that was used by Newtonian gravity is not compatible
to the newly found special relativity.

Lorentz Poincaré
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In a vague sense, Einstein and other physicists knew that space
and time cannot be distinguished under the rules of relativity.

It was not until 1908 that Minkowski, teacher of Einstein,
proposed the concept of Minkowski four dimensional
space-time where a metric of Riemann type is used to describe
all phenomena that appear in special relativity. The group of
motion of this space-time is given by the Lorentzian group.
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After this important discovery of Minkowski, Einstein realized
that the description of gravity should be given by a four
dimensional object. By thought experiments, he realized that
the quantity to describe gravity has to depend on directions at
each point. When an observer is moving in some direction, the
distance he or she measures will change depending on the
direction he is measuring. (When it is measured in the
direction perpendicular to his movement, nothing changes but
is different when it is parallel to his movement.)
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After he consulted his college friend Grossmann, Einstein
understood that gravity should be measured by a tensor: a
quantity that was invented by geometers (Christoffel, inspired
by Riemann’s works) in late nineteenth century. In fact, the
tensor he needed was first invented by Riemann in 1854, with
different signature. This was a great breakthrough as
Newtonian gravity was measured by a scalar function, not by a
tensor.

Grossmann Riemann Christoffel
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When Einstein wanted to generalize the equation of Newton
on gravity, he needed some quantity that was obtained by
differentiating the above metric tensor two times. (In
Newtonian gravity, it was determined by the Laplacian of the
scalar gravitational potential.) But he wanted to make sure
everything obeys the equivalence principle: every law of
physics is the same independent of frame of observer. Hence
the result of this second derivative of the metric tensor must
be a tensor again.
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Well, it is known that all tensors that are obtained by
differentiating the metric tensor twice must be a combination
of the curvature tensor of the metric and the curvature tensor
is the only tensor that depends linearly on the second
derivatives of the metric. If there are other physical fields
coming from different matter (other than gravity) there is a
matter stress tensor. Then a simple generalization of Newton’s
equation is try to equate the above curvature tensor with this
matter tensor.
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There is only a couple of curvature tensors that can do the
job. One is called the Ricci tensor which was found in the
library by Grossmann for Einstein. It was invented by Ricci in
the end of nineteenth century.

Ricci
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Einstein and Grossmann wrote two papers in 1912 and 1913,
where they wrote down the equation for gravity in tensorial
form. But Einstein was not able to use the equations to
explain perihelion of Mercury. He was tempted to give up the
equivalence principle by choosing a suitable coordinate system.
The Einstein-Grossmann equation did not satisfy conservation
law and has to be modified!

12 / 59



Einstein struggled on this question until he met Hilbert in
1915. By November, Hilbert and Einstein arrived at the
derivation of the Einstein equation around the same time.
Hilbert also found the Hilbert action whose variation will give
the Einstein equation. It should be noted that Hilbert gave a
lot of credit to Emmy Noether on helping him to achieve the
works. The great accomplishment of Einstein also relied on his
understanding of the physical meaning and the application of
the equation to explain astronomical events.

Noether Hilbert
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The geometers Euler, Gauss, Riemann, Ricci, Christoffel,
Bianchi, Minkowski, Hilbert, Levi-Civita and others had great
impact on the creation of the subject of general relativity. But
the creation of general relativity has tremendous input on the
development of Riemannian geometry in the twentieth century
up to present days.

We shall discuss about such development now.

Euler Gauss Levi-Civita
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The idea of using symmetry to dictate geometry and
physical phenomena:

Some physicists claimed that Einstein was the first one to use
symmetry to derive an equation of interest. Actually his work
was inspired by his teacher Minkowski who used Lorentzian
group as the group of symmetry to derive the Minkowski
space-time.
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In fact, the idea of using symmetry to understand geometry
went back to the nineteenth century where the works of
Sophus Lie and Klein helped us to create invariants of
geometry by continuous symmetries. Klein’s famous Erlangen
Program in 1872 was to classify geometry according to their
group of symmetry.

Klein Lie
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The classification of the structure of the Lie groups is one of
the most glorious chapter in mathematics. It starts from
Sophus Lie, Killing, Klein and continued into the twentieth
century by E. Cartan, and H. Weyl. The power of
representation theory of finite and compact groups has
repeatedly appeared in geometry and physics.

Cartan Killing
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Weyl was the key person to pioneer the theory for compact Lie
groups. Hermann Weyl, Eugene Wigner and others applied
such theory to quantum mechanics and brought fruitful
results. It has been one of the most important method in
studying particle physics, where groups U(1), SU(2), SU(3)
and SU(5) are related to electric magnetic field, weak
interaction, strong interaction and grand unified fields.

Weyl Wigner

18 / 59



The work of Emmy Noether on the action principle had direct
influence on modern physics and geometry. In fact, she was in
Göttingen in 1915 when Hilbert was working on the action
principle of general relativity. Hilbert acknowledged the
influence of her ideas on his work.

The Noether theorem, which was published in 1918, inspired
the modern treatment of mechanics and modern symplectic
geometry and the concept of moment map.
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Development of gauge theory:

Immediately after the success of Einstein on general relativity,
there was great desire to unify all the known forces by using
ideas similar to general relativity. At that time, the most
important field is electricity and magnetism as is dictated by
Maxwell equations.

Maxwell
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There were two approaches: one is the gauge theory of
Hermann Weyl and the other one is the Kaluza-Klein model of
General relativity in five dimensions.

Both of these two developments lay the foundations of modern
geometry and modern physics.

Kaluza Klein
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In fact, in the theory of electromagnetism, Riemann-Silberstein
vector which combines electric and magnetic fields, is also
attributed to Riemann. This is a complex vector of the form
F = E + c

√
−1B where c is the speed of light.

This vector is an origin of what physicists later generally called
‘dualities’ in the framework of string theory and quantum field
theory. For example, the interpretation of Geometric
Langlands program in the work of Kapustin and Witten
originates from a generalization of this ‘electro-magnetic’
duality to nonabelian contexts.

At the level of particles, this is the duality between electron
and magnetic monopole, which gave birth to the
Seiberg-Witten theory in physics.
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Hermann Weyl was the first one who introduced the concept
of Gauge theory. (he was the one who coined this
terminology.) While gravity can be considered as a gauge
theory with gauge group given by the group of
diffeomorphisms, Weyl succeeded to show that Maxwell
equations is also a gauge theory with gauge group given by
U(1). The development went through a nontrivial process.

The group that Weyl proposed at the beginning was non
compact and cannot preserve length. This was criticized by
Einstein. But after a few years, Weyl learned from the works
of London et al in quantum mechanics that the group should
be U(1). Once the group is chosen right, length is preserved
under parallel transportation and Maxwell equation becomes a
gauge theory.
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While Weyl accomplished the remarkable interpretation of
Maxwell equations in terms of gauge theory around 1928, the
theory of connection was developed by several geometers. In
1917 Levi-Civita studied parallel transport of vectors in
Riemannian geometry. In 1918 Weyl in his book “Raum, Zeit,
Materie” introduced affine connections. Cartan in 1926
studied holonomy group for general connections.

Levi Civita and E. Cartan were interested in another approach
to extend Einstein theory of general relativity by looking into
connections with nontrivial torsion.( Einstein was using
Levi-Civita connections which has no torsion.) The connection
still preserves metric. This is in fact a form of gauge theory on
the tangent bundle. But Weyl’s point of view was different
and did not restrict himself to tangent bundles.
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In 1944, Chern studied Hermitian connections on complex
bundles and, using the curvature of the Hermitian connections,
introduced the Chern classes of the bundles. They give rise to
the de Rham classes of the space which turns out to be
integral classes.

Chern de Rham
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Upon seeing the definitions, Weil interpreted Chern’s theory in
terms of invariant theory. This is called the Chern-Weil theory.
It is remarkable that Weil said that at that time Chern classes
may be used to quantize physical theory.

The modern formulation of connections on arbitrary bundles
was introduced by C. Ehresmann in 1950.

Weil Ehresmann
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Modern development of high energy physics and theory of
condensed matter shows that the prediction of Weil is
accurate. In fact, not only Chern classes play an important
role in modern quantum field theory, the Chern-Simons
invariant, which is derived from curvature representation of
Chern classes, also play an important role in condensed matter
physics and string theory, which in turn influence the study of
knot theory in geometry, as was shown by Witten that it can
be used to explain the Jones polynomial of the knots.

From this point of view, an important insight was gained to
calculate the volume of a complete hyperbolic metric on the
knot complement. This is called Volume conjecture due to
Kashaev, Murakami and Murakami.
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The volume conjecture states that in a certain limit when the
number of colorings N approach infinity in the N-colored
Jones polynomial for a knot, the value of the colored knot
Jones polynomial evaluated at the N-th root of unity is the
exponential of N-times the simplicial volume of the knot
complement divided by 2π. The knot complement can be
uniquely decomposed into hyperbolic pieces and Seifert fibered
pieces. The simplicial volume is then the sum of the hyperbolic
volumes of the hyperbolic pieces of the decomposition.

The volume conjecture dictates the convergence of the
quantum Chern-Simons path integral with non-compact gauge
group and has nontrivial connections with three dimensional
quantum gravity. This connection was anticipated by Witten
and later studied also by Gukov and Vafa.
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In 1954, there were two independent developments related to
gauge theory. One was the work of Yang and Mills who looked
at an action on the space of connections on higher rank
bundles over a manifold. The group of parallel transportation
will preserve a higher dimensional Lie group whose dimension
is, in general, greater than the circle group as was used by
Weyl. This group is in general not commutative. Hence this
generalization of gauge theory of Weyl is called nonabelian
gauge theory. The action that Yang and Mills used was the L2

norm of the curvature of the connection.
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The theory of Yang-Mills was finally quantized by ’t Hooft in
early seventies, based on preliminary works of Faddeev-Popov.
This was a difficult work as there is a problem of choice of
gauge. The works of ’t Hooft was continued by Veltman,
Gross et al. It laid the foundation for the theory of standard
model of modern particle physics.

Yang ’t Hooft
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The equation of motion defined by the Yang-Mills action gives
rise to a nice elliptic system (in a suitable choice of gauge)
which was not studied by geometers. At late sixties and early
seventies, during the process of quantization of gauge theory,
’t Hooft and Polyakov became interested in the concept of
monopoles and instantons defined on four dimensional
Euclidean space. They give important special solutions of
Yang-Mills equation, by minimizing Yang-Mills energy in terms
of topological data. Because of the last property, they played
important roles in topological quantum field theory.
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There were extensive efforts by physicists and mathematicians
in the seventies to find these instantons. The equations of
instantons were rewritten in 1977 by C.N. Yang in terms of
Cauchy-Riemann equations. In fact, what Yang did was that
the instanton bundle should be extended to be a holomorphic
bundle over complex projective space and, after extension, the
instanton connection satisfies certain equation on this
holomorphic bundle which we later called
Hermitian-Yang-Mills connection.

The concept of Hermitian-Yang-Mills connection can be
generalized to higher dimensional Kähler manifolds. They are
“super symmetric” and played important roles in the
development of string theory and algebraic geometry.
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The most important work in this direction was due to
Donaldson for algebraic surfaces and due to Uhlenbeck-Yau for
arbitrary Kähler manifolds.

In the meanwhile, Donaldson observed that the moduli space
of instantons can be used to define topological invariants for
four dimensional manifolds. Hence he made the first major
achievement in the theory of topology of smooth four
manifolds. While Donaldson invariants have been fundamental,
it is not so easy to compute. Ten years later, Seiberg and
Witten found a simpler invariant for four manifolds which
enjoy similar properties as Donaldson invariants. Taubes made
fundamental contributions to the subject of symplectic
geometry by constructing pseudoholomorphic curves based on
nonvanishing of Seiberg-Witten invariants. Many major results
were solved by the work of Taubes.
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The other important development was due to E. Calabi. He
was also interested in the Yang-Mills action on the space of
metrics. Within the space of Kähler metrics with the same
Kähler class, Calabi showed that the critical point of the
Yang-Mills functional gives rise to the Kähler-Einstein metric if
the Kähler class is proportional to the first Chern class.

The existence of such critical points was not known at the
time. It is called the Calabi conjecture when the first Chern
class is zero.
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The third major development, after the great discovery in
1915, was the work of Kaluza, followed by Oscar Klein. They
proposed a remarkable approach to create the Maxwell
equations from vacuum Einstein equations. They considered
the vacuum Einstein equation on a four dimensional manifold
product with a circle and demanded all the fields to be
invariant under the rotation of the circle group.

In this way, they found a (Lorentzian) metric tensor, a vector
field and a scalar on the four manifold. The vector field
satisfies the Maxwell equations which couple with the metric
tensor. This is a beautiful theory, except that the extra scalar
field cannot be found in nature. Nonetheless , this is a
beautiful theory and Einstein likes it.
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This theory is the forerunner of the compactification theory in
modern string theory. The circle is replaced by a six
dimensional manifold satisfying certain constraints. Those
constraints give rise to the Calabi-Yau manifolds which are
Kähler manifolds with a non-vanishing holomorphic volume
form.
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The existence of a Kähler metric with zero Ricci curvature was
proved by me in 1976. Its use in string theory was proposed by
Candelas-Horowitz-Strominger-Witten in 1984. The proposal
was that, with the right choice of such Calabi-Yau manifolds,
we can calculate the basic physical quantities in nature,
including number of generations of fermions, grand unification
scale and Yukawa couplings. Many important algebraic and
enumerative properties was proved for Calabi-Yau manifolds
based on intuition coming from string theory.
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A very major property that arises in physics is duality between
Calabi-Yau manifolds which gives a very effective tool to
calculate interesting geometry objects that are of great
interest to geometers. Different branches of mathematics were
brought in to study such dualities.

It is rather exciting to watch these branches merge in a natural
manner within string theory.
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The basic tools to study above theories came from some
classical theory in mathematics and in physics. Hilbert, in his
systematical way to organize the theory of integral equations,
introduced the concept of Hilbert space. The study of
self-adjoint and non-self-adjoint operators on Hilbert spaces
play fundamental roles in quantum mechanics.

It was a coincidence that abstractly defined spectrum of an
operator coincide with the spectrum found in nature. Weyl
also found the fundamental Weyl law for the asymptotic
behavior of the spectrum of linear elliptic operators based on
the question on black body radiation, which was a question
raised by Lorentz.

39 / 59



Study of index of elliptic operators relating index of the
operator to the topology of the manifold has made much
contribution to modern geometry and particle physics. This
gave rise to the famous Atiyah-Singer index formula.

Atiyah and Singer
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One of many physics applications of the index formula is to
the study of anomaly in Quantum Field Theory. Fujikawa
among others derived the chiral anomaly using index theorem.
Alvarez-Gaume and Witten applied similar methods to the
study of anomaly in quantization of gravity. Green and
Schwarz used it to derive the correct grand unification group
for the Heterotic string, setting off the 1st string theory
revolution.
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The very important tool towards such development was
pioneered by Hodge in 1941. This actually went back to the
works of nineteenth century where periods of integral were
studied extensively by Riemann, Abel, Lagrange, Jacobi and
others.

Hodge Abel
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A significant part of the later interpretation of Riemann’s work
owes to Hermann Weyl. Weyl’s book “Die Idee der
Riemannschen Flache” formulated Riemann’s results in modern
terms concerning the existence of polarized Hodge structures.

Weyl’s book was published in 1913 as the fifth volume in the
series of Göttingen Lectures on mathematics, the previous four
volumes were by Klein, Minkowski, Voigt, and Poincaré.

Weyl developed the theory later called Hodge theory in his
book based on a motivation from fluid dynamics . His
philosophy was influenced by the book of F. Klein, “On
Riemann’s Theory of Algebraic Functions and their Integrals”.
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Period is the integral of a closed form over a cycle. According
to the theory of de Rham, this gives a pairing between
topological cycles and space of closed forms modulo those
which are exact. Hodge proposed forms that are closed and
coclosed to be harmonic forms. He proved that periods can be
realized by harmonic forms.

Historically, the question of period was studied for two
dimensional surfaces at the beginning. Some part of this
theory was developed by the theory of two dimensional fluid
dynamics in nineteenth century. Klein wrote about it in his
book. In the 1913 book on Riemann surface, Weyl established
the theory of harmonic forms on Riemann surfaces based on
the Dirichlet principle of Riemann.

In 1930s, Hodge generalized the theory to higher dimensional
manifold based on the theory of parametrix of Hadamard.
Hodge’s work appeared in 1942.
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Hodge stated that the main purpose of his book “The theory
and applications of Harmonic integrals”, published in 1941,
was to prove, using differential forms and the then recent de
Rham theorem, Lefschetz’s results on the topology of
algebraic varieties.

He derived several theorems of de Rham using his main
existence theorem for harmonic integrals. This led to the
Hodge decomposition theorem.

It is interesting to note that Weyl published a paper called
“Method of Orthogonal Projection in Potential Theory”,
which he demonstrated how to apply the theory to study
Hodge theory in Riemann surfaces. This method was later
used extensively to study Hodge theory.
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Right after Hodge published his work, a gap was found in the
proof of existence of harmonic forms with prescribed period
which was fixed by Weyl and Kodaria via different approaches.

Weyl’s proof appeared in the paper “On Hodge’s theory of
Harmonic integrals” in 1943. Kodaira gave another proof
independent of Weyl’s for the prescribed period problem in
1942. Kodaira later generalized it to the existence of harmonic
forms with prescribed singularities (and periods).

In early fifties, Milgram and Rosenblum introduced the heat
equation method to give a proof of the Hodge theory. The
method of heat flow has tremendous influence in later
development in geometry.
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In the above discussion on Weyl estimate on asymptotic
behavior of eigenvalues, we should mention that estimate of
eigenvalues of Laplacian went back to early works of applied
mathematicians and physicists such as lord Kelvin, lord
Rayleigh, Rellich, Hilbert in nineteenth century and also Polya,
Szegö, Courant, Carleman in the early twentieth century.

Some approaches are based on studying the heat kernel and
the Tauberian theorems (in the last fifty years, wave equation
method was brought in by Hörmander, developed by Ivrii,
Victor Guillemen, Sternberg, Duistermaat, Boutet de Monvel,
Sjöstrand, Taylor, Zelditich, Melrose, Ralston and others),
which was the one used by Weyl to deduce his asymptotic
estimates. Another approach was based on variational
principle, or min-max principle characterization of eigenvalues.
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The later method brought in close relation of spectrum of
Laplacian with geometry, especially the isoperimetric inequality
of various kind. Polya and Szegö gave many important
discussions on how those quantities give rise to effective
estimates of eigenvalues of Laplacian. The idea appeared later
in the paper of Cheeger where he discussed the estimate of
first eigenvalue on a compact manifold. This is now called
Cheeger inequality and is being studied extensively in the
theory of graph.

While the idea of using wave kernel has been able to link
eigenvalues of Laplacian with the length of closed geodesics of
the manifold, the method of heat kernel gives rise to many
delicate estimates in geometry, including the local index
formula of Atiyah-Singer. This later work has played important
roles in modern quantum field theory.
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Several important events occurred in the nineteen seventies
that changed geometers’ view towards physics. Besides the
important discussion of instanton solutions to Yang-Mills
equations which led to the revolution of topology of four
manifolds, we have the discussion of positive mass theorem in
general relativity.

While this conjecture was settled by Schoen any myself in
1978, it has far reaching consequence in understanding
geometry of manifolds with positive scalar curvature. The
later work of Witten in proving the positive mass conjecture
using Dirac spinors gives a different and powerful venue to
understand classical general relativity.
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In the past thirty years, both the methods of Schoen-Yau and
Witten have developed to be important powerful tools in
classical general relativity and the theory of manifolds with
positive scalar curvature.

Perhaps one should mention that the method of harmonic
spinor dated back to the important work of Lichnerowicz on his
famous vanishing theorem, which, coupled with Atiyah-Singer
index theorem, gave the first instinct of topological
obstruction for metrics with positive scalar curvature.
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A very major turning point for implication of ideas on
geometry was the famous paper of Witten on analytic
treatment of Morse theory appeared in 1984 in Journal of
Differential Geometry. This paper has deep influence in later
development of supersymmetric quantum field theory and
differential geometry. Immediately afterwards, Floer extended
the ideas to build the Floer theory in symplectic geometry
where he was able to prove the Arnold conjecture in case the
manifold has trivial higher homotopy groups.

The idea of Witten was motivated by quantum field theory
and also became the foundation of later development of
topological field theory.
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The idea of keeping track of the change of a theory when
some parameter is moving, is a very important one. In the
case of the heat equation proof of the Hodge theory or the
index formula, when the temperature is very high, we see the
harmonic forms or solutions of some linear elliptic system. But
when the temperature is low, the classical effect comes from
the metric or from the coefficients of the operators. Hence if
some object (such as the index of the elliptic operator) is
invariant when the temperature varies, we can relate it on the
one hand to quantum mechanical property and on the other
hand to classical properties.

In Witten’s interpretation of the Morse theory, space of
harmonic forms is related to critical point of a function defined
on the manifold. In 1994, Seiberg and Witten, based on
similar philosophy, also connected the Donaldson invariants on
four manifolds to some topological invariant which are easier
to compute.
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A very important contribution of the Seiberg-Witten type
invariants is the fundamental result of Cliff Taubes who was
able to make use of the non-vanishing of the (topological)
Seiberg-Witten invariant to construct pseudo-holomorphic
curves for four dimensional symplectic manifold with an almost
complex structure.

Many important open problems in four dimensional symplectic
geometry were solved by this theorem of Taubes. In particular,
Taubes solved an old problem that the symplectic structure on
the complex projective plane is unique.
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The subject of Symplectic geometry probably already started
after Newtonian mechanics was invented. But the modern
development mainly started from the work of Emmy Noether
where she published the important foundational work in 1918.
Many modern ideas such as moment map can be traced to her
works.

The theory of geometric quantization and moment map played
an important role in geometry and physics, influencing the
theory of representation and differential geometry.

Atiyah and Bott initiated the idea of interpreting Yang-Mills
action of bundles over Riemann surfaces. This point of view
has deep influence on Donaldson and other mathematicians in
Oxford, who started to look at similar situations on complex
algebraic surfaces.
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However, the theory becomes much more complicated as
theory of nonlinear elliptic equation associated to the subject
in this number of dimensions is not solid enough. In most
cases, it was used as a motivation rather than a proof.

On the other hand, Symplectic geometry has become much
more developed in the last thirty years after it was realized
that the theory of mirror symmetry, motivated by physical
consideration, called for a symmetric treatment of symplectic
geometry with complex geometry. Roughly speaking , the
symplectic geometry of one Calabi-Yau manifold is supposed
to be isomorphic to the complex geometry of the mirror
Calabi-Yau manifold. The actual situation is much more
complicated as we need to find the so called quantum
corrections to the symplectic theory. But the quantum
corrections contain many interesting geometric objects that we
like to learn, for example pseudo-holomorphic curves.
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Pseudo-holomorphic curves are also called worldsheet
instantons by physicists. In fact, when Candelas et. al.
computed the instanton correction for an important
Calabi-Yau manifold, he found a closed formula for the
counting of rational curves within the manifold, revealing its
deep geometric properties.

It solved a long standing question in enumerative geometry.
Nobody in algebraic geometry expected that it can be done in
such an elegant way. Up to now , there is no other way to find
the formula of Candelas et. al. based on algebraic geometry
alone although the formula was proved rigorously to be true by
Givental and Lian-Liu-Yau independently, a few years after
Candelas and collaborators announced their result.

This new chapter of enumerative geometry is called the theory
of Gromov-Witten invariants. Major contributions on the
subject can be viewed as joint efforts of mathematicians and
physicists.
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In the past ten years, we have witnessed that topological
quantum field theory is starting to play important roles in also
condensed matter theory, for example, as seen in the works of
Charles Kane, S. C. Zhang, on topological insulators and
Kitaev and X. G. Wen on topological phases. Sophisticated
Chern-Simons theory calculations and higher order tensor
category theories were used in some of these studies, especially
regarding questions on classification of topological orders.

Recently we proposed, in collaboration with J. Wang and X.
G. Wen, the quantum statistics of anyon excitations in
condensed matter systems satisfy consistency relations arising
from surgery on three and four manifolds. This is deeply
related to the work of Witten on TQFTs.
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A very important goal in fundamental physics and geometry in
the twenty first century is to build a solid foundation for a
theory that is capable to incorporate quantum theory in the
small scale of the spacetime. Insights from physics and
geometry have to play a fundamental role.

String theory, theory of quantum entanglement and concept of
noncommutative geometry were brought in. The
understanding of quantum entanglement, may offer a deeper
look into the nature of spacetime, and important geometric
concepts related to gravitation such as quasi-local mass
studied by me and collaborators.

There is no doubt that great activities in the interactions
between geometry and physics will go on today and in the
future. And both subjects will greatly benefit from it. We
expect to see much further interactions between geometry and
physics in the next fifty years.
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Thank you!
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