Broad Overview of Neutrino Physics

International Workshop : Neutrino Research and Thermal Evolution of the Earth Oct. 20, 2016 Itaru Shimizu (Tohoku Univ.)

Contents

- Introduction to neutrino physics
- Neutrino oscillation
- Double beta decay
- Open questions about neutrino
- Neutrino astrophysics

What is Neutrino?

elementary particles = fundamental constituent of matter

Neutrino Hypothesis

Neutrino is light neutral particle suggested by W. Pauli in 1930 to explain the continuous energy spectrum of emitted electron in β -decay

Neutrinos slip out of the detector because of the weak interaction

Neutrino Detection

Neutrinos react so seldom with matter (high permeability)

 $\bar{\nu}_{\rm e} + {\rm p} \rightarrow {\rm e}^+ + {\rm n}$

need thickness of 20 light-year in water to react

In those days, people thought the neutrino detection is experimentally impossible ...

Intense production of neutrinos by nuclear reactor and development of detection technique

In 1953, neutrinos are detected by Reines and Cowan finally!

Neutrino in Standard Model

- Mass of neutrino is zero
- 3 flavor lepton number (e, ν_e) (μ, ν_μ) (τ, ν_τ) is conserved
- All neutrinos are left-handed, and all anti-neutrinos are right-handed
- Neutrino and anti-neutrino can be distinguished

2 component neutrino model

Neutrino Oscillation

Assuming

- 1. Neutrinos have tiny masses (beyond Standard Model)
- 2. Flavor (weak) states are superpositions of mass states

 $|\nu_{\alpha}\rangle = \sum_{i} U_{\alpha i} |\nu_{i}\rangle$ flavor $i \uparrow \text{mass}$ no diagonal unitary matrix MNS (Maki-Nakagawa-Sakata) Matrix $U_{MNS} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$

Where are neutrinos coming from?

Man-made Neutrino

Accelerator

Reactor

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \qquad ^{235}\text{U} + \text{n} \rightarrow \text{X} + \text{Y} + 6.1\text{e}^{-} + 6.1\bar{\nu}_{\text{e}} + 2.5\text{n} + 202 \text{ MeV}$$

etc.
$$\overset{\text{also } ^{239}\text{Pu}, \ ^{238}\text{U}, \ ^{241}\text{Pu} \qquad \text{no charge}$$

expensive!

Well-controlled man-made sources are more appropriate for a precise investigation of the neutrino property

high light yield

1,325 17 inch + 554 20 inch PMTs

Reactor Neutrino

strong evidence of neutrino oscillation

If mass of neutrino is zero, this quantum interference is not allowed

Neutrino oscillation experiments require 3 different mass states

Neutrino has nonzero mass

Neutrino Oscillation Experiments

Neutrino in Standard Model

- Mass of neutrino is zero X
- 3 flavor lepton number (e, ν_e) (μ, ν_μ) (τ, ν_τ) is conserved ×
- All neutrinos are left-handed, and all anti-neutrinos are right-handed X
- Neutrino and anti-neutrino can be distinguished

Neutrino in Standard Model

- Mass of neutrino is zero X
- 3 flavor lepton number (e, ν_e) (μ, ν_μ) (τ, ν_τ) is conserved ×
- All neutrinos are left-handed, and all anti-neutrinos are right-handed X
- Neutrino and anti-neutrino can be distinguished

Light Neutrino Mass

The mass of heavy neutrino can be as heavy as 10²³ eV! (10¹⁰ times of energy attained by world's largest accelerator)
Heavy neutrino (just below GUT scale) naturally explains
"finite but light neutrino mass"

Matter Dominated Universe

- significant **asymmetry** between matter and anti-matter

 neutrinos and photons are the most abundant particle
 neutrinos / nucleon ~ 10⁹

Neutrinos may play a key role to explain matter/anti-matter asymmetry

Matter Production

Three Sakharov conditions

Violation of B–L. Guaranteed if neutrinos are Majorana particles.

• C and CP violation. Guaranteed if the neutrino Yukawa couplings contain physical phases.

• Departure from thermal equilibrium. Guaranteed, due to the expansion of the Universe. A. Ibarra, Leptogenesis, INSS 2012

CP violating decay of heavy neutrino explains "matter dominance in the universe"

Neutrinoless Double-Beta Decay

Require the neutrino Majorana nature

Heavy neutrino naturally explains "finite but light neutrino mass"

 CP violating decay of heavy neutrino explains "matter dominance in the universe" (Leptogenesis theory)

Light Majorana Neutrino Exchange

Possible contributions also from Majoron, SUSY, right-handed current, ...

Effective neutrino mass <m_{ββ}>

 $\langle m_{\beta\beta} \rangle = \left| \left| U_{e1} \right|^2 m_1 + \left| U_{e2} \right|^2 e^{i\alpha_1} m_2 + \left| U_{e3} \right|^2 e^{i\alpha_1} m_3 \right|$

- Unknown parameters : α_1 , α_2 , m_{min}
- Mass hierarchy is not determined
- Cancellations due to CP phases (α_1 , α_2)

How to measure
$$< m_{\beta\beta} > ?$$

determine the decay rate using large number of BB-decay nuclei

Kamioka Liquid Scintillator Anti-Neutrino Detector Zero Neutrino Double Beta

KamLAND-Zen

A \diamond 0 0 Δ Inner Balloon Xe-LS 🖌 (3.08 m diameter) 320 kg Xe loaded **Outer-LS** l kton

Xenon loaded LS (Xe-LS)		
decane	82%	
pseudo-cumene 18%		
PPO	2.7 g/liter	
xenon	2.44 wt%	

 $\sigma_{E}(2.5 \text{MeV}) = 4\%$

Advantage of KamLAND

- running detector : start quickly with relatively low cost
- big and pure : no BG from external gamma-rays
- purification of LS, replacement of mini-balloon are possible
 - high scalability (a few ton of Xe)

target $\langle m_{\beta\beta}\rangle$ ~ 60 meV / 5 year

Nylon Film with Low Radioactivities

Specially made 25 µm nylon film for low radioactivities in U/Th/K

effect of ultrasonic cleaning

U	•	150	\rightarrow	$2x10^{-12}g/g$
Th	•	59	\rightarrow	$3x10^{-12}g/g$
⁴⁰ K	•	140	\rightarrow	2x10 ⁻¹² g/g

Data-taking restarted in September 2011

KamLAND-Zen Phase-II (2016)

KamLAND-Zen Phase-II search after Xe-LS purification found no significant $0\nu\beta\beta$ signal obtain lower limit on half-life Half-life limit at 90% C.L. $T^{0v}_{1/2} > 1.9 \times 10^{25} \text{ yr}$ Phase-I $T^{0v}_{1/2} > 9.2 \times 10^{25} \text{ yr}$ Phase-II Combined $T^{0v}_{1/2} > 1.07 \times 10^{26} \text{ yr}$

Limits on Neutrino Mass

First search below 100 meV ~ near IH region

Prospects of KamLAND-Zen

increase decay target nuclei by pressurized Xe

KamLAND2-Zen

General-purpose

larger crane strengthen floor enlarge opening

accommodate various devices CaF₂, CdWO₄, NaI, ...

1000 kg enriched Xe

High performance

Winstone Cone

High Q.E. PMT

17" $\Phi \rightarrow 20$ " Φ , $\epsilon = 22\% \rightarrow 30\%$

Photo-coverage > X2 x1.9 Light Collection Eff. > X1.8

New Liquid Scintillator

x1.4

KamLAND liquid scintillator 8,000 photon/MeV typical liquid scintillator 12,000 photon/MeV

naive calc. < 2%

target $\langle m_{\beta\beta} \rangle$ ~ 20 meV / 5 year

Open Questions

- CP phase (δ) v oscillation
 Is phase δ violating CP symmetry non-zero?
- Mass hierarchy v oscillation, 0vββ decay

 $v_1 < v_2 << v_3, v_3 < v_1 << v_2, v_1 \sim v_2 \sim v_3$?

• Sterile neutrino v oscillation, cosmology

Is there 4th sterile neutrino?

- Absolute mass scale β-decay, 0vββ decay, cosmology What is the absolute neutrino mass scale?
- Dirac or Majorana Ονββ decay
 Is neutrino Dirac particle or Majorana particle?

Current & Future experiments

v oscillation

KamLAND, Borexino, Super-K, SNO, T2K, MINOS, NOVA, LBNE, OPERA, Double-Chooz, Daya Bay, RENO, Nucifer, Stereo, CeLAND, SOX, Sage2, LENS, IsoDAR, MicroBooNE, ICARUS, ...

Ονββ decay

KamLAND-Zen, EXO, GERDA, CUORE, SuperNEMO, SNO+, CANDLES, MOON, DCBA, Majorana, Lucifer, AMORE, COBRA, NEXT, ...

β decay

KATRIN, Project 8

Many experiments to answer the open questions!

Neutrino Astrophysics

Relic Supernova Neutrino

Neutrino Radiography

Summary

- Neutrinos have been played a key role to develop particle physics so far.
- Discovery of the neutrino mass and mixing from the studies for the last few decades is a revolution.
- Future prospects of neutrino physics are very exciting!
- Furthermore, neutrinos will be essential to reveal the history of the Universe and the Earth.

Let's pay great attention to the next geo neutrino talk!