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Earth system dynamics modeling
and target of this talk---

Convetive-radiative balance

At
e oceanic lithosphere

Driving the plate motions \  /  \  /

Target area of this talk

The long-term thermal and chemical evolution of Earth could be described as core-
mantle-plate-environmental system connected in terms of heat transfer caused by
mantle dynamics (the slowest dynamics)
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Earth as a cooling system

Radiogenic heat producing element (HPE)

Geochemical analysis as well as ‘geoneutrino’
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However, the amount of HPE would
not matter with thermal evolution

Increasing the heat production rate
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Not very different for the
amount of HPE in the mantle
- Cooling rate ~ 70 to 80 K /Gyrs
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HPE in the metallic core - Tiny partition
coefficient: Mainly partitioning into the
mantle

Temperature [K]
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Major HPE source in the core -
Potassium

Dk~0O(0.01) - only few 10s ppm
could be partitioned into the molten
iron: Very small contribution of core

heat budget - HPE would not be

likely to be found in the mantle
rather than metallic core.

Also suggested from partitioning of
light elements in the metallic core
[Hirose et al., 201 3].



Recent hot topic on structure in the core-mantle
boundary region - A weird (mysterious) feature found
In seismological and geomagnetic secular variation
analyses
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_ Seismology MAC wave in the stable region could be explained.



Goal of this talk

-ormulate thermo-chemical evolution of
—arth’s core

- Implement 1t iInto numerical mantle convection
simulations

ow does It work In core-mantle evolution
system.

- Implications and conclusions.



The origin of stable region below the
CMB - Thermal or chemical or both?
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- Sediment caused by inner core growth?



Two types of stable region
beneath the CMB

(a) Super-adiabatic (b) Sub-adiabatic

ompositionally stable

~

Thermo-chemically stable

Well-mixed Well-mixed

h Thermal effects \

Sub-adiabatic shell allows growing beneath the compositionally-stable region only if
the heat flow across the CMB is sub-adiabatic - Assume that the heat flow in the
stable region would be equivalent to the CMB heat flow.



1.

3.

First - Compositional evolution
Based on Buffett and Seagle [2010 in JGR]

Assumptions
Two diffusion processes are
assumed In the stable region -
Simple chemical diffusion and
baro-diffusion.

2. Fe(mw)—Fe(m)+O(m): Oxygen

Is the light element of Earth’s
core; This oxygen is supplied
from core-mantle equilibrium
chemical reaction (Frost et al.,
2010); Chemical boundary
condition at CMB is as a
function of CMB temperature.
At the interface, the neutral
buoyancy state is assumed.
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Oxygen in liquid Fe (wt. %)
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Next, thermal evolution
Modified from Lister and Buffett [1998]

If the stable region can be found in the system, two temperatures can be also
computed as following global heat balance equations.
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Again, using the heat balance at the interface, we also find the thermal effects of
displacement rate of stable region -
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Finally, the position of interface between stable and well-mixed regions can be
computed as
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Simple case - Heat flow across the
CMB given as a function of time

(a) CMB Temperature (b) Super-adiabatic heat flow
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What happens with the stable
region - Preferable origin

(a) Layer thickness
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(b) Layer structure
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(a) Sensitivity to the CMB heat flow

400 I I I I
350Qemp=15 TW —— .
250 QCMBfg $w |
200 [JCMB" .
150 —
100 -
/7—-4
50 - = —
0 | | | | | | | | |
0O 05 1 15 2 25 3 35 4 45
Time (Gyrs)
(b) Thermo-chemical effects for Qg g=2 TW
I I I I
2000 + T-C effect —
C effect
1000 - T effect -
0 —— |
-1000 |- \
-2000 —
| | | | | | | | |
O 05 1 15 2 25 3 35 4 45
Time (Gyrs)

Growth rate caused by sub-adiabatic effects - 1500 km for 1.0 billion years: Compositional effects
are required for consistent thickness of stable region.
From some constraint on CMB heat flow (~11 TW), the preferable origin would be purely

compositional effects
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Effects on chemical diffusivity of
Earth’s core

(a) Sensitivity to the chemical diffusion
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To be consistent with a constraint
on stable layer thickness estimated
from geomagnetic secular variation

(~140 km) [Buffett, 2014], the
chemical diffusivity would be
O(108) m4/s - Somewhat consistent
with with theoretical estimates
[Pozzo et al., 201 3; Ichikawa and
Tsuchiya, 2015].



CMB heat flow given from

numerical mantle dynamics model

(a) Two-composition (b) Three-composition
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CMB Temperature (K)

Inner core size (km)
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Quick view on evolution of stable
region
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CMB Temperature (K)

Inner core size (km)
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HPE effects in the mantle

Surface Cond. Heat Flow
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High HPE - very slow cooling down but rapid cooling down in early Earth
corresponding to the spike of surface heat flow (~initiate the plate-like behavior).



Summary and implications

- Incorporating ‘core-mantle chemical coupling’ into numerical mantle convection simulations to check
how the stable region works for core-mantle evolution system

- Reducing the initial CMB temperature from unrealistically high temperature - 4900 K with the stable
region.

- Low CMB heat flow may not explain the possible thickness of stable region - Compositional origin would
be preferable and purely thermal origin may not be allowed (ceasing the geodynamo actions and so on).

- High chemical diffusivity would be rather explained for the current constraint on thickness of stable
region inferred from geomagnetic secular variations.

- With realistic mantle dynamics (?), the core-mantle boundary would not be rapidly cooled down because
the stable region works for the much stronger heat buffer of heat transport across the core but
keeping high CMB heat flow (~13 TW).

- HPE in the mantle may not affect the core evolution but small effects for mantle evolution. - If HPE in
the mantle would be upper-limit value inferred from ‘geoneutrino flux’, the mantle would not be rapidly
cooled down over the age of the Earth. Most amount of cooling might be happened in around the ‘early
Earth’ = 50 K/Gyr. The heat transport system in a convecting mantle would be almost balanced after
the early Earth stage has been finished, that is, CMB heat flow + HPE + magmatic heat flow-Surface
heat flow ~ O TW. This would be consistent with the recent melting experiments under high P-T
condition and its implications [Andrault et al., 2016].






