Geoneutrino studies with 部·理学研究科

Odetector

8

東北大

OOPI

SENDAT

示了仙台

International Workshop : Neutrino Research and Thermal Evolution of the Earth October 25 – 27, 2016, Sendai, Japan

JUNO Collaboration

try	Institute	
ia	Yerevan Physics Institute	
n	Universite libre de Bruxelles	-
	PUC	
	UEL	
	PCUC	
	BISEE	100
	Beijing Normal U.	11
	CAGS	
	ChongQing University	
	CIAE	
	DGUT	2
	ECUST	
	Guangxi U.	
	Harbin Institute of	
	Technology	
	IHEP	
	Jilin U.	
	Jinan U.	
	Nanjing U.	
	Nankai U.	
	NCEPU	
	Pekin U.	
	Shandong U.	
	Shanghai JT U.	
	IMP-CAS	
	Tsinghua U.	
	UCAS	
	U. of South China	
	Wu Yi U.	
	Wuhan U.	
	Xi'an JT U.	

Collaboration established in July 2015 Now: 66 institutions 444 collaborators 8 obervers

		No. Contraction
	China	Xiamen University
~	China	NUDT
	Czech	Charles U.
4	Finland	University of Oulu
	France	APC Paris
1	France	CPPM Marseille
	France	IPHC Strasbourg
	France	LLR Palaiseau
	France	Subatech Nantes
à	Germany	Forschungszentrum Julich
1	Germany	RWTH Aachen U.
1	Germany	TUM
2	Germany	U. Hamburg
	Germany	IKP FZI Jülich
	Germany	U. Mainz
	Germany	U. Tuebingen
P	Italy	INFN Catania
	Italy	INFN di Frascati
	Italy 🛛 🖤	INFN-Ferrara
	Italy	INFN-Milano
	Italy	INFN-Milano Bicocca
	Italy	INFN-Padova
	Italy	INFN-Perugia
	Italy	INFN-Roma 3
	Pakistan	PINSTECH
	Russia	INR Moscow
	Russia	JINR
	Russia	MSU
	Taiwan	National Chiao-Tung U.
	Taiwan	National Taiwan U.
	Taiwan	National United U.
	Thailand	SUT
	USA	UMD1
	USA	UMD2

JUNO

Location of JUNO

NPP	Daya Bay	Huizhou	Lufeng	Yangjiang		Yangjiang 7		Taisha	`aishan		
Status	Operational	Planned	Planned	Under construction		Under constructi		ion			
Power	17.4 GW	17.4 GW	17.4 GW	17.4 GV	V	1	18.4 GV	W			
Overbur	den ~ 700 m				by 2	020:	26.6	GW	7		
				Previous site ca	andidate		ama		Q		
Kaiping, Jiang Men	Ziecqing	Guang	Zhou,				and l	C	78 Q		
Guangdon	g Province	2.5 h drive	Shen Zhen	C I	Huizhou NPP	L	ufeng IPP				
		Changeshan Zhongshan Zhonghang River Ester	ii 🔥 Allon	_{s Kong} Daya Bay NPP							
			Hong K	ong							
	🥇 53 km 🕻	Mac	au	Cores	YJ-Cl YJ-	C2 YJ-C3	YJ-C4 Y	J-C5	YJ-C6		
53 kn	n	ALC: N	1	Power (GW) Baseline (km)	2.9 2.9 52.75 52.8	2.9 34 52.42	2.9 52.51 5	2.9 2.12	2.9 52.21		
- A	Taish	an NPP		Cores	TS-C1 TS-C	C2 TS-C3	TS-C4 I	OYB	HZ		
Yangjian	g NPP			Power (GW) Baseline (km)	4.6 4.6 52.76 52.6	4.6 63 52.32	4.6 1 52.20	17.4 215	17.4 265		

JUNO Progress and Schedule

 Ground breaking in Jan. 2015
⇒ 900 m slope tunnel excavated out of 1340 m
⇒ 330 m vertical shaft

S30 m vertical shaft excavated out of 611 m

Schedule:

Civil preparation: 2013-2014 Civil construction: 2014-2017 Detector component production: 2016-2017 Detector assembly & installation: 2018-2019 Filling & data taking: 2020

Progresses of the excavation

AS: Acrylic sphere; SSLS: stainless steel latticed shell

D43.5m

AS: Acrylic sphere; SSLS: stainless steel latticed shell

Veto system

• Top tracker (TT):

- Re-using the Target Tracker walls of the OPERA experiment;
- Total number is 62 and cover half of the top area;
- 3 TT layers spaced by 1 m ,each layer have x,y readout;
- A solid bridge support the TT and its mechanical structure;
- Perform a precise muon tracking and provide valuable information for cosmic muon induced Li9/He8 study.

• Water Cherenkov detector:

- 20 inch MCP-PMT used for veto system with number~2000;
- Detector efficiency requirement is expect to be>95%;
- Fast neutron background ~0.1/day.
- Compensation coils system used for earth magnet field shielding to keep PMT performance.
- Water system:
 - Employ a circulation/polishing water system;
 - Keep a good water quality -including radon control.

JUNO is mupltipurpose detector

"Neutrino physics with JUNO", J.Phys.G 43 (2016) 030401

- Neutrino mass hierarchy study
- Precision measurement of neutrino oscillation parameters
- Supernova bursts and diffuse supernova neutrinos
- Solar neutrinos
- Atmospheric neutrino
- Geoneutrino
- Sterile neutrino
- Nucleon decays
- Neutrinos from DM
- Exotic searches with neutrinos

R.Han, Y.-F. Li, L.Zhan, W.F.McDonough, J.Cao, L.Ludhova

"Potential of geoneutrino measurements at JUNO" Chinese Phys. C, Vol 40, No3 (2016) 033003

V. Strati, M.Baldoncini,I,Callegar, F.Mantovani, W.F.McDonough, B.Ricci,G.Xhixha "Expected geoneutrino signal at JUNO" Progress in Earth and Planetary Science 2, 1 (2015).

Detection of geo(anti)neutrino

- Earth (in constrast to the Sun) emits antineutrino. $\Phi_{\overline{v}} \sim 10^6 \text{ cm}^{-2} \text{s}^{-1}$
- Part of antineutrino in the U and Th decay chains is emitted with E>1.8 MeV (IBD threshold)
- Contributions from U and Th are distinguishable
- Oscillations are averaged:

Expected antineutrino spectrum

Expected signals

• Expected total reactor signal

1569± 88 TNU^{*}

(~90% contribution from Taishan and Yangjiang nuclear power stations) *1 TNU = 1 event on 10³² protons an year

- Reactor signal in the geoneutrino energy window [1.8-3.27 MeV]: 351± 21 TNU
- Expected geoneutrino signal: $Stot=39.7^{+6.5}_{-5.2}$ TNU $S_{LOC}=17.4^{+3.3}_{-2.8}$ TNU (V. Strati, et al.)

Backgrounds for geo-neutrino measurement

1)Reactor antineutrinos (90% of the total antineutrino signal in geo-nu window):

Geo/Reactor ratio

KamLAND= 0.23 (now much more) Borexino = 1.8 JUNO = 0.11

2)Cosmic muons induced backgrounds, including cosmogenic production of (βn)-decaying isotopes (2000 m.w.e.)

 3)Internal radioactive contamination: accidental coincidences, (αn) reactions

GeoNu/Backround depends on the thermal power of 2 reactors

Summary of expected rates

Source	[1.8-9.0] MeV ev/yr	[1.8-3.3] MeV ev/year	Uncertainty
geo	408	406	
reactor	16100	3653	±2.8%(rate) <mark>±1%(shape)</mark>
⁸ Li/ ⁸ He	657	105	±20%(rate)±10%(shape)
fast n	36.5	7.7	±100%(rate)±20%(shape)
αn	18.2	12.2	±50%(rate)±50%(shape)
accidental	401	348	±1%(rate)

20t->FV(R<17.2m) 18.35t or $12.85 \cdot 10^{32}$ protons ϵ =80% detection efficiency assumed in calculations acrylic vessel (²³⁸U: 10 ppt, ²³²Th: 10 ppt) LS: 10^{-15} g/g ²³⁸U/²³²Th

Reactor spectrum : Daya Bay

F. P. An, et al., "Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay Experiment", arXiv:1610.04802v1 [hep-ex] 16 Oct 2016

1230 days >2.5 10⁶ antineutrino events Near detectors 350-600 m

Reactor spectrum

Y.J. Ko, et al., "A sterile neutrino search at NEOS Experiment" arXiv: 1610.05134v1 [hep-ex] 17 Oct 2016

24 m from reactor R(E)=5% @ 1 MeV 1965 ev/day 46 days reactor OFF 180 days reactor ON Refers to F. P. An et al. (Daya Bay), (2016), arXiv:1607.05378 [hep-ex] (621 days of data)

The differences between the fission fractions for the NEOS data and the ones for Daya Bay are taken into account and small corrections are made using the H-M flux model.

Geoneutrino signal extraction precision fixed M(Th)/M(U)=3.9

Fig. from R.Han, et al. In JUNO publication the sensitivity was estimated as 18% for 1 yr with -4% syst.bias

Geoneutrino signal extraction precision free Th and U components

1	0.90 ± 0.17	1.02 ± 0.02	0.05 ± 0.00
3	0.96 ± 0.10	1.03 ± 0.20	0.80 ± 0.38
5	0.96 ± 0.08	1.03 ± 0.16	0.80 ± 0.28
10	0.96 ± 0.06	1.03 ± 0.11	0.80 ± 0.19

U/Th ratio reconstruction

Distribution of the ratio reconstructed-to-generated U/Th ratio for 1 (blue line) and 10 (red line) years of lifetime after cuts. The simulations resulting in zero Th contribution are not plot here (fig. from JUNO publication).

Radiogenic heat

Fig. from R.Han, et al.

Signal from the mantle

Type equation here.Can be extracted from the measurement if crust contribution is known

R(Mantle)=R(Geo, measured)-R(Crust, predicted)

Current prediction ($V.\ Strati,\ et\ al.$) for the R(Crust) has 18% uncertainty – blue line in the plot

Red line : 8% crust contribution knowledge (KamLAND level)

$$\Delta N_{M} = \sqrt{(\varepsilon_{Geo} N_{Geo})^{2} + (\varepsilon_{C} N_{C})^{2} + N_{C}}$$

$$\varepsilon_M = \frac{1}{1 - r_c} \sqrt{(\varepsilon_{Geo})^2 + (\varepsilon_c r_c)^2 + \frac{r_c}{N_{Geo}}}$$

$$r_C \equiv \frac{N_C}{N_{Geo}} \qquad \varepsilon \equiv \frac{\Delta N}{N}$$

Importance of local contribution prediction

local (<500 km) crust contributes 50% of geoneutrino signal

Directionality?

- The average forward shift of neutrons in the direction of incoming antineutrinos have been observed by reactor experiments (i.e. by CHOOZ).
- The basic idea is to search for the small statistical displacement of the capture vertex of the neutron with respect to the vertex of the prompt positron event.
- The neutron from the inverse beta decay of geoneutrino carries energy up to tens of keV and is emitted in a relatively narrow range (below ~ 55 degrees) of angles around the incoming antineutrino. The average forward displacement of the neutron capture vertex is about 1.7 cm, as observed by CHOOZ for reactor neutrinos, while the spread due to neutron drifting is about 10 cm.
- Given the small displacement (~1.7 cm) and the large intrinsic smearing (~25 cm), the direction of the reconstructed antineutrino is only meaningful statistically and needs large statistics. Because the direction to the reactors in JUNO is known, it looks promising exploiting the fit of displacement distribution with predicted separate distributions from geo and reactor antineutrinos in conjunction with the spectral fit. An attempt to separate the crust and mantle geoneutrino components could be made. Both tasks need extensive MC studies.

Summary

- JUNO represents a new opportunity to measure geoneutrinos, recording of 300 to 500 geoneutrino interactions per year. In approximately six months JUNO would match the present world sample of recorded geoneutrino interactions, which is less than 150 events.
- Using a well constrained estimate of the reactor signal and reasonable estimates of the non-antineutrino sources, the conclusion is that geoneutrinos are indeed observable at JUNO.
- Maximizing the precision of the mantle geoneutrino measurement at JUNO requires detailed knowledge of the uranium and thorium content in the crust within several hundreds of kilometers to JUNO.
- The statistical power of the geoneutrino signal at JUNO enables a measurement of the thorium to uranium ratio, which provides valuable insight to the Earth's origin and evolution.