Radioactivity (U & Th) in the Lithosphere: Xenolith Analyses & Data Compilation

- Background & Objectves
- Approach
- U & Th data
- Discussion
- Conclusions

Tsuyoshi IIZUKA, Jun NAGAO, Kenta UEKI University of Tokyo

Relevance to Geoneutrino

150

S. Enomoto et al. / Earth and Planetary Science Letters 258 (2007) 147-159

Regional study of the Archean to Proterozoic crust at the Sudbury Neutrino Observatory (SNO+), Ontario: Predicting the geoneutrino flux

Yu Huang¹, Virginia Strati^{2,3}, Fabio Mantovani^{2,3,4}, Steven B. Shirey⁵, and William F. McDonough⁶

Variable Composition of CC

- The thickness and composition of CC vary with tectonic setting, resulting from the evolution of CC.
- The average CC composition is reasonably well established based on the data for mature CC, but island arc crust composition is not yet.

Evolution of CC

- Generation of new CC by mantle partial melting.
- Differentiation of CC by fractional cryst./re-melting.
- Erosion/weathering of CC.
- Accretion of sediments/oceanic crust.
- Recycling of CC via subduction/delamination.

Kemp & Hawkesworth '03

Objective

Toward understanding the evolution of CC & establishing the mantle composition, we determine the chemical composition of Japanese island arc crust.

<u>Approach</u>

(i) Seismic Properties

providing in-situ data for wide region

- (ii) Petrology and chemistry of rock samples
 - mainly from uppermost crust
 - rarely from deep crust (e.g., xenoliths)
 providing precise trace element data

Kodaira et al. '06

This Study

Xenolith Samples (by Nagao)

- Megata: 55 samples
- Takashima: 68 samples
- Oki: 92 samples

Total...215 samples

Total...10862 datasets.

Geology of Japan

This Study

Xenolith Samples Megata...55 samples. Takashima...68 samples. Oki...92 samples. Total...215 samples.

Methodology

Petrology

Determining mineral assemblages using sample thin sections.

Major element analysis using glass bead

X-ray fluorescence analysis. (PANalytical Axios @ Uni. Tokyo)

Trace element analysis using glass bead

Laser ablation-ICPMS. (Cetac LSX-213 Nd:YAG+Thermo icapQ @ Uni. Tokyo)

Th Contents in Japanese Rocks

U Contents in Japanese Rocks

U-Th Decoupling

U⁴⁺: fluid immobile U⁶⁺: fluid mobile Th⁴⁺: fluid immobile

Young upper crust has lost U due to weathering, while young lower island crust has gained U due to fluid addition.

Log U normal distributions in each rock type.

U log ppm

Conclusions

- 215 xenolith samples were analyzed for U-Th.
- 10862 datasets were compiled.
- The combined datasets reveal that:
 (i) upper island crust is depleted in U c.f. GCC.
 (ii) lower island crust is enriched in U c.f. GCC.
 (iii) Each rock type shows log U normal distribution.
- The discrepancy between IC & GCC may be due to U⁶⁺ mobility in young crust.

High ⁸⁷Sr/⁸⁶Sr suggests ancient metasomatism (Rb addition).

Petrology

<u>Oki</u> Thin section : 100 samples. Mineral assemblage : 60 samples.

<u>*Iki*</u> Thin section : 17 samples.

<u>Takashima</u> Thin section : 75 samples

<u>Megata</u> Thin section : 50 samples.

Continental Crust (CC)

- covers ~40% of the Earth's surface.
- sits at high elevations due to its lower density.
- contains significantly old (~4.0 Ga) rocks.
- is a major reservoir of incompatible elements (U & Th).
- controls the oceanic & atmospheric compositions.

Understanding the evolution of CC is a fundamental goal in Earth Sciences.

