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So, what IS a Neutrino?

This is a Neutrino

StablerElementary Particle
INGreleciric clhiarge
Veryaliimlennheraciionwirnimaiter
IHas very litile mass
oS o themthiolgh

This was a Neutrino
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Subatomic Structure

Electrons

Proton

Nucleus

Neutron
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Where do Neutrinos come from?

v Nuclear Reactors

Sun v

(power stations, ships) |§

‘/Par'ﬁcle Accelerator

Supernovae

SN 1987A ¥

Z1 octopber 2016

Astrophysical
Accelerators

IceCube v

v Earth's Atmosphere

(Cosmic Rays)

v Earth's Crust
(Natural

Radioactivity)

Big Bang
(here 330 v/cm3)
Indirect Evidence
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So why are neutrinos important?

Anthropic view: Keep physicists busy figuring out why and how....
Very unusual properties... shape shifters, totally unpredicted
Daily use? None! (Yet, but history of electron and many others)
Produced in abundance in Big Bang (associated with excess of matter?

Supernovae explosions produce nu's in horrendous numbers,
and are associated with the production of elements heavier than iron

Learning about the interior of sun and earth.

Monitoring nuclear reactors unintrusively and remotely

John Learned at Tohoku Forum for Creativity S 27 October 2016

Communication? Expensive on earth (but crazy fast traders...)
Maybe ultimately with ET?

Neutrinos are Fundamental to our existence.. and useful too. o




Radioactive Beta Decay

How were Neutrinos discovered?
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Wolfgang Pauli
(1900-1958)
Nobel Prize 1945




Clyde Cowan ~ t Fred Reines
( -1974) &8 (1918 - 1998) |
(@)} / ~ Nobel Prize 1995

Anti-Electron
Neutrinos
from
Hanford
Nuclear
Reactor




First Observation of Solar Neutrinos

Inverse Beta-Decay
(*Neutrino Capture”)

Homes‘l'ake Solar-Neutrino
Observatory (since ca.1967) |




The Original Solar Neutrino Deficit

\/

A
Calculation the
 expected fraction
of solar neutrinos

Y from various

reactions

Homestake

Chlorine

John Bahcall

Measured (1967 ~1995) |

Raymond Davis Jr. Nobel '02

John Learned at Tohoku Forum for Creativity

1U




Neutrinos are Shape Shifters!

They change from one type (e, mu, tau)
to another (and back again)
as they fly along.
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Mixture of Neutrinos of Various Masses

Neutrino

~ \ Mass m,
Electron- | / P
Neutrino
| 7% Neutrino

Mass m,
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Neutrino oscillation is a wave phenomenon
(Wave-Particle Duality)




Neutrino Oscillations

Mass m




Neutrino Oscillations




The Solar Neutrino Deficit Resolved

Gallex/GNO Super- ~

Homestake SAGE Kamiokande SNO (Deuterium)

Chlorine Gallium Water | vetd—p+pre”
_________________ .
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KamLAND Reactor Neutrino Experiment (Japan)

Crane

Rock lining

el Outer water tank

Inner tank

Lig.-scinti.
Container

M Aluminum sheets

Phototubes

detect v,
from >100km
and observe
deficit due to
oscillations
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Events/0.425 MeV

KamLAND Settles the Solar Problem

— reactor neutrinos
@ geo neutrinos
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Atmospheric Neutrino Flux

Primary Cosmic Ray Super-Kamiokande

. Nucleus (air)

27 October 2016
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Atmospheric Neutrino Anomaly

from below

Super-Kamiokande

only half oi: -j'ha

fr'om 'fL, J‘Jf’
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Fit to Entire Atmospheric V Data Set

multi-GeV p+PC
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SuperK neutrino
oscillations paper
now most cited
paper in history of
experimental
particle physics

Phys. Rev. Lett. 81,
1562 (1998).

Nobel Prize 2015
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Neutrino Mass and Composition

Differences of neutrino
masses deduced from
oscillation experiments.

Atmospheric Neutrinos:
mé —m5 =2 103 eV?

Solar Neutrinos:

m% —m12 =7><10_56V2

Mixings peculiarly large,
No theoretical model

John Learned at Tohoku Forum for Creativity 27 October 2016
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Grand Unification Epnch

_L &éﬁ %,3' End of Quantum Gravity Epoch
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&

Neutrinos
may play
crucial
role in the
genesis of
excess

matter over
anti-matter
in the
universe...
Hence we
are herel
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Matter Inventory of the Universe

Dark Energy Copernicus"!

Cosmological Constant)
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Neutrino Signal from Supernova 1987A

IMB event 33160, 39 MeV
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Neutrinos Involved in Making the Heavy Elements
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neutron capture

"
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atomic number —e

Neutrinos condition
the neutron bath

in which the atoms
accrete mass.

The r-process in
supernovae is thought
to be the main source
of heavy elements.

And, the Fluorine in
your toothpaste, for
example.

John Learned at Tohoku Forum for Creativity 27 October 2016

25



KamLAND sees neutrinos from

Japan (and Korea)

Nuclear Power Stations in Japan

[Electric Power Development m(cumminl plant. Aug. 1999)
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KamLAND Observes Neutrino Oscllations
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FIG. 4: Allowed regions projected in the (tan® 012, Am3,) plane, for
solar and KamLAND data from the three-flavor oscillation analysis
for (a) O3 [ree and (b) #13 constrained by accelerator and short base-
line reactor neutrino experiments. The shaded regions are from the
combined analysis of the solar and KamLAND data. The side panels
show the &\'Q—pmﬁles projected onto the tanZ 012 and Amgl axes.

Survival Probability

0.2

— 3-v best-fit oscillation —e— Data - BG - Geo ¥,
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FIG. 5: Ratio of the observed 7. spectrum to the expectation for
no-oscillation versus Lo/ F for the KamLAND data. Lo = 180 km
is the flux-weighted average reactor baseline. The 3-1 histogram
is the expected distributions based on the best-fit parameter val-
ues from three-flavor unbinned maximum-likelihood analysis of the
KamLAND data.
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KamLAND Neutrinos from the earth

“GeoNeutrinos”
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FIG. 6: Prompt energy spectrum of the 7, events in the low-energy

region. Bottom panel, data together with the fitted background and ¢
geo Ve contributions. The shaded background and geo v, histograms

are cumulative. Middle panel, background and reactor 77, subtracted

data together with the geo 7.'s for the decay chains of U (dashed)

and Th (dotted) calculated from a geological reference model [12].

Top panel, the energy-dependent selection efficiency.
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FIG. 8: Geo 7, flux versus the radiogenic heat production rate from
the decay chains of ***U and ***Th. The measured geo 7. flux
(gray band) is compared with the expectations for the different man-
tle modelsfrom cosmochemical [32], geochemical [5], and geody-
namical [33] estimates (color band). The slope starting at 7TW in-
dicates the response to the mantle 77, flux, which varies between the
homogeneous and sunken-layer hypotheses (solid lines). discussed
in the text. The upper and lower slopes (dashed lines) include the
uncertainties in the crustal contributions.

Geoneutrinos reveal Earth’sinner secrets

2
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Vital €O, flux fro
Amazon vegetation
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Gene signature
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FORENSIC SCIENCE
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Moving on to the Big Picture

and the Future needs

John Learned at Tohoku Forum for Creativity 27 October 2016
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The Next Challenges in Big Neutrino Detectors:

50 KT LS - 600 KT WC Detectors?

Motivations (~in energy order):
* Geoneutrinos

* Neutrinoless bb decay

* Solar Neutrinos (HeP, CNO...)

* RAA and Reactor Spectrum Problems

* Search for Sterile Neutrinos

* Relic SN Neutrinos

* Supernova Neutrinos

* Indirect DM Searches

* Other anomalies (LSND, MBOONE)
* Nuclear Counter-Proliferation

* Proton Decay Search

* Long-Baseline Oscillations

* Hierarchy

* CP violation

* Atmospheric Neutrinos

* Earth Tomography

* Cosmic Neutrinos (>100 TeV, >1PeV)

Under Construction
SNO+
JUNO

Rejuvenated Soon?
KamLAND

SuperK

Borexino

Probable (my view)
HyperK, HKK
DUNE (10KT)
JinPing
INO

Also discussed

* USA ("Theia Project")
* Europe EAGUNA (LENA)

John Learned at Tohoku Forum for Creativity 27 October 2016
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New Physics Challenges, and New Detectors

Several Areas Needing Improvements

- Lower thresholds... big detectors reaching ~1-2 MeV
More Pixelation (~1m -> few cm)
Timing (<100 ps)
Better Scintillator or WBLS (more light, long atten)
Great Cleanliness (Borexino or better)
Lower CR backgrounds by going deeper than 2KMwe

27 October 2016

- Directionality (even a little is good at few MeV)
- Better particle ID in LB experiments (back reconstruction)

Not all are possible in one type of detector

John Learned at Tohoku Forum for Creativity

World Nu Community cannot afford Many >$500M Detectors

We must join together to move forwards.
Theia? SuperKamLAND?
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What is missing in the world mix?

Assuming extended IceCube and KM3 at high energy +
HyperK + SNO+ and JUNO and Jinping...

We need a detector with

M > 20kt with

Threshold ~ 1 MeV

Depth >»>2 kmwe

An accelerator beam pointed at it

JGL's current favorite prospect:

90 KT |

LS Theia in Homestake

Now discuss some issues related to such development.

Photodetectors are prominent need, not discussed here.

John Learned at Tohoku Forum for Creativity 27 October 2016
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2009 Readlization that Liquid Scint Detector Can Reconstruct Events

First light yields topology.
Snapshot of the Fermat Surface for a Single Muon-likeTrack

!'
& f Y
(LY
\/
% % Y
A%
2
V/ Incoherent sum
-

coincident with
Cherenkov surface:
Not polarized!

J.G. Learned, asXiv:0902.4009

21 October 2016

John Learned at FROST, Mainz
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Fast and Simple Start to Reconstruction

» Center of charge fits
middle of track

» Fermat surface
= earliest possible photons
~ Cherenkov +
earliest scintillation

21 October 2016

» Center of time
(using Fermat surface photons)

fits near one end of track

John Learned at FROST, Mainz

» And connect dots!

Sakai thesis, 2016
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Fit to 14 Neutrinos in KamLAND from J-Parc

Tag pure beam neutrinos due to having spill times

Agreement with MC

3.5
3
2.5
2
15
1
0.5

Entries per bin

4F

(K-S test p-value = 0.65)

— T2K

0

... FSP i (GENIE)

-------

1 0.8 06 04 02

Not official KL result yet

MEFEE I A B A
0 02 04 06 08 1

Cos(angle from J-PARC)

Sakai Thesis

21 October 2016
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20

10

A Simple Ellipticity Particle ID

e+

mu-

| | Entries 238
| | Mean -0.8755

RMS 0.6605

Entries 214
Mean -3.52
RMS 1.343

Ellipticity

» Fiducial volume cut:

< 3 m radius
» Event selection
efficiency:
em =— 24%,
o= 2.1%

Sakai Thesis

Probably can do much better in future

21 October 2016
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Competitive DM Results from This Technique

Sakai Used Back-Propogationtion in KamLAND
to seek Dark Matter Annihilation Neutrinos

10

Ogp [Pb]

107"

1072

-3
Akt S

22KT SK
10°*

Sakai Thesis

PICASSO %{{{//////////////////////////////////4//////////4{%

"

wy DAMA/LIBRA

N

KL (bb) e

SK(W'W) ___=

. ISK (t*7)

10

Not official KL Results, yet

1o
m, [GeV/c ]
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From Sebastian Lorenz's talk at FROST, Mainz

Working Principle of the
Topological Reconstruction
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» Use all photon hits from all PMTs

@ PRiSMA

» Divide result by local detection efficiency
— Number density of emitted photons

» “Connect information” in multiple iterations
— Use prior result as “prior information” in

—

Decrease
cell size

next iteration
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What is the point?

We can have low threshold (MeV)
and we can achieve cm scale resolution at
higher energies (GeV)

Yo cover a
huge range in energy
and
great reach in physics

in a single large deep scintillation detector

John Learned at Tohoku Forum for Creativity 27 October 2016
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MiniTimeCube Small

and Directional
Inverse Beta Detector

Fast digitizing electronics (x6)

2.2 liter scintillator

Small portable 2.2 liter
scintillating cube with neutron
capture doping.

Contain positron, lose gammas

Do imaging with fast timing, not
optics (time reversal imaging).

Get some neutrino directionality
between positron origin and
neutron capture point.

Reject noise on the fly; no
shielding needed (if far from
reactor)

4 x 6 MCP (x64 pixels each) fast
(<100 ps) pixel detectors on
surrounding faces

~10/day anti-neutrino interactions
(inverse beta decay signature)
from reactor.

Data taken at NIST, being
analyzed at present

21 October 2016

John Learned at FROST, Mainz
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Fitting the Positron Track in mTC

Positron track,
. and fitting to it

Glenn Jocher, Ultralytics

21 October 2016

John Learned at FROST, Mainz



NulLat a new type of 3D pixelated detector

Stack of optically isolated scintillating cubes
Light transmitted largely to 3 directions

6 PMTs get coincident, strong light
Lithiated plastic cubes now available

Alternate design for large version with LS

NB, log scale

John Learned at Tohoku Forum for Creativity 27 October 2016
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Reconstructing 3D Energy Deposition in NuLat

Allows breaking multi-dimensional degeneracies

Truth Reconstructed

a ’ a
3 LT -
u’g Hay I’ﬂ Rag
3 o By s a® W,
# .. y s R
||! (] = II! i [ |
phgnd gt g e gt Ny
it . 5
M @ M @
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Not the case in 2D or 1 D detectors....
Very importnat in identifying events and eliminating backgrounds

John Learned at Tohoku Forum for Creativity 27 October 2016
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NulLat as a reactor neutrino detector

Reactor power cycles
and fuel composition

New tool in non-
proliferation arsenal

Detection of special
nuclear materials

NuLat whitepaper:

Directionality
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http://arxiv.org/abs/1501.06935
http://aap2015.phys.vt.edu/

NulLat Demonstrator Being Assembled Now

- A5 x5x5ROL with ¢Li-loaded scintillator

» Contract with Eljen for 130 cubes

* Instrumented with 150 PMTs, Spring 2017
- Demonstrate reactor monitoring

— Deploy at commercial power plant
* Measure backgrounds for NulLat
— Deploy at NIST in NuLat shielding

John Learned at Tohoku Forum for Creativity 27 October 2016
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NuLat at a 20MW Reactor

Plan to take to NIST
Same locationas mTC

5 m from core

Spring 2017

NuLat at NSBR, NIST

John Learned at Tohoku Forum for Creativity 27 October 2016
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Gamma-induced false prompt events

— Multiple Compton scattering: Energy outside of vertex
— Accept 0.2 MeV <E < 1.0 MeV
— This alone removes - 60% of gammas

JHU AFL

Energy Outside of Vertex Energy Outside of Vertex
outVertex outVertex
12000 H- Entries 42253 | 100 Entries 1998 |
H Mean 0.5427 B Acce ance ;ﬂa;n ggﬁ?
. RMS 0.6849 ) j
ool Acceptance 0l 'np d
I . L winaow
] / window B
80001 /
i 60—
o001 -
L 40— |
4000 [ :]’hh \[f ftjf
i |
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2000 r~1-
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PSD for background rejections
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Neutrino studies are mature
We have a good 3 neutrino model
Campaigns progressing for hierarchy, lowest mass, CP violation

A few mysteries and many challenges remain

New detection techniques are being developed... only discussed
two which we have been exploring... (nTC and Nulat)

Seems to be growing international desire for a huge scintillation

detector at great depth, low threshold, and 10x existing size

Solution: Theia? SuperKamLAND? Other?

Join the fun and stay tuned

John Learned at Tohoku Forum for Creativity 27 October 2016
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