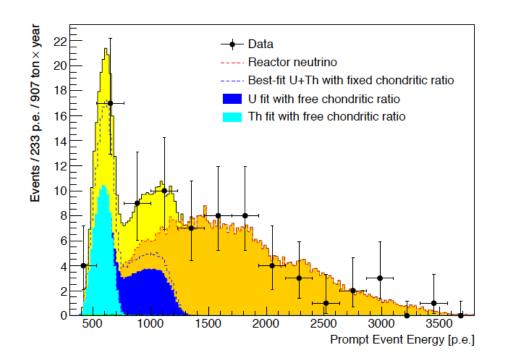
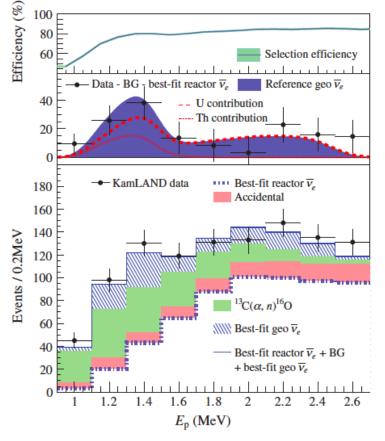

Robust Geo-Neutrino Results

Steve Dye University of Hawaii Hawaii Pacific University

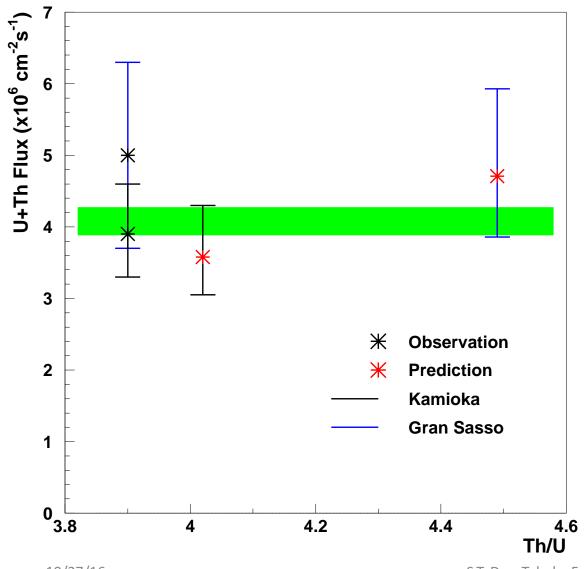
Spectacular Achievements

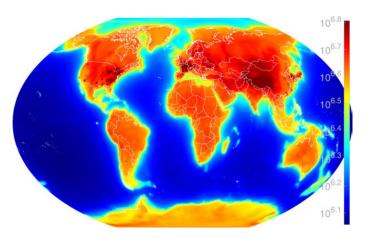



10/27/16

S.T. Dye, Tohoku Forum Creativity

Geo-neutrino Observations


KamLAND data (2013) 4.6σ detection


Geo-neutrinos conclusively observed at Japan and Italy

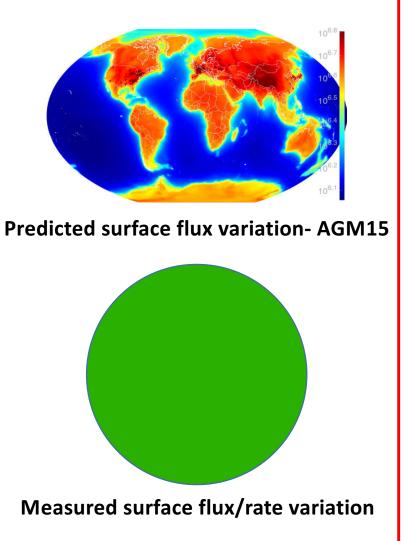
Assumptions and Model Dependence

- Measured geo-neutrino rate (TNU) and spectrum (Th/U)
- If Th/U not resolved, <u>assume</u> Th/U (3.9) to go from rate to flux
- If source reservoirs not resolved, <u>assume</u> no core and use crust <u>model</u> to get mantle flux
- Radiogenic heating from mantle flux for model distributions
- Questions
 - Do assumptions and model dependence bias answers?
 - Are there assumption-free and model-independent measurements?

Observations and Predictions Compatible

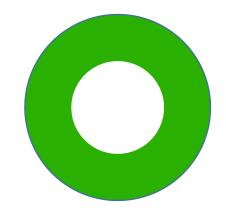
Predicted surface flux variation- AGM15

Geo-neutrino observations have not yet independently confirmed surface flux variation


10/27/16

Constant Surface Flux/Rate Hypothesis Flux

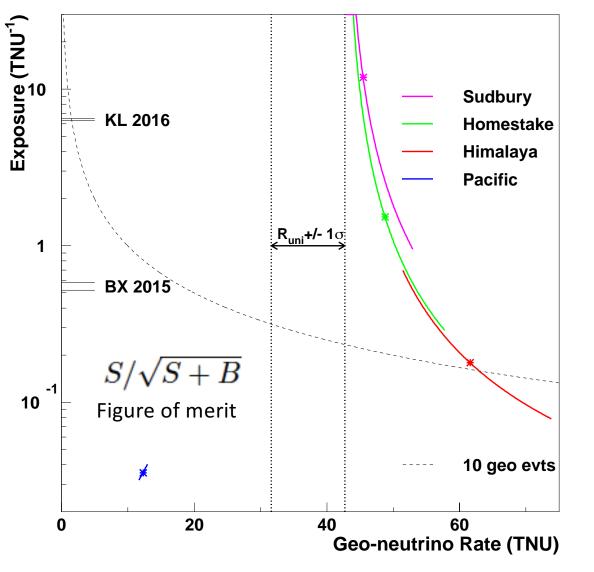
- Borexino 2015- ϕ_{U+Th} = 5.0 ± 1.3 cm⁻² μ s⁻¹
- KamLAND 2016- $\phi_{\text{U+Th}}$ = 3.9 ± 0.7 cm⁻² μ s⁻¹
- Weighted Average- ϕ_{U+Th} = 4.15 ± 0.62 cm⁻² μ s⁻¹
- $\phi_{\rm U}$ = 2.25 ± 0.33 cm⁻² μ s⁻¹; $\phi_{\rm Th}$ = 1.90 ± 0.28 cm⁻² μ s⁻¹

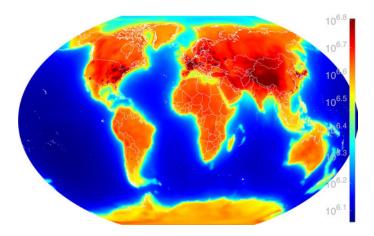

Rate

- Borexino 2015- R_{U+Th} = 43.5 ± 11.8 TNU
- KamLAND 2016- $R_{U+Th} = 34.9 \pm 6.0 \text{ TNU}$
- Weighted Average- R_{U+Th} = 37.2 ± 5.5 TNU
- R_U = 29.6 ± 4.4 TNU; R_{Th} = 7.6 ± 1.1 TNU

Constant Surface Flux/Rate Hypothesis

Constant surface flux => constant HPE mass fractions Uranium flux: $\phi_U = 2.25 \pm 0.33 \text{ cm}^{-2}\mu\text{s}^{-1}$ Uranium mass fraction: $a_U = 46 \pm 7 \text{ ng/g}^*$ Thorium mass fraction: $a_{\text{Th}} = a_U \text{ Th/U}$ (=3.9) Potassium mass fraction: $a_K = a_U \text{ K/U}$ (=12000) Radiogenic power: $P = 44 \pm 7 \text{ TW}$

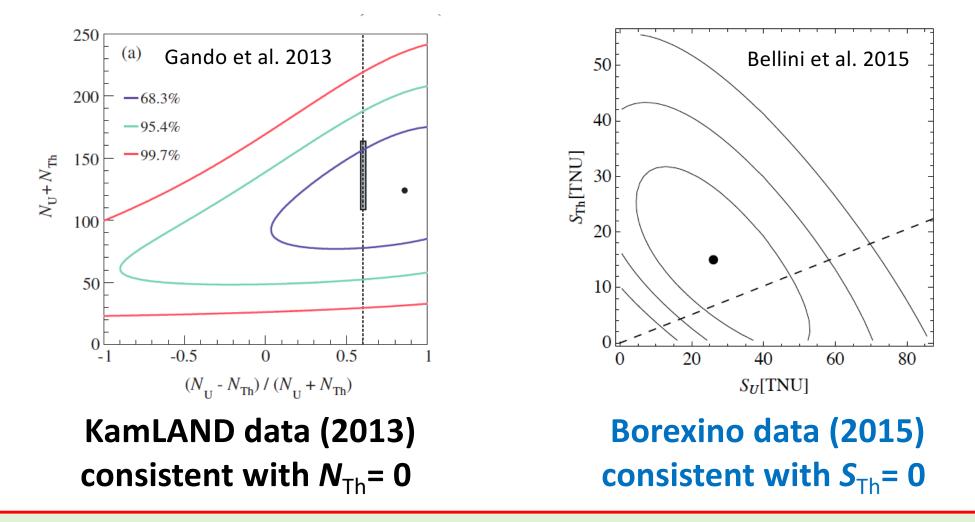



Measured Heat Flux: P = 47 ± 2 TW (Davies and Davies, 2010)

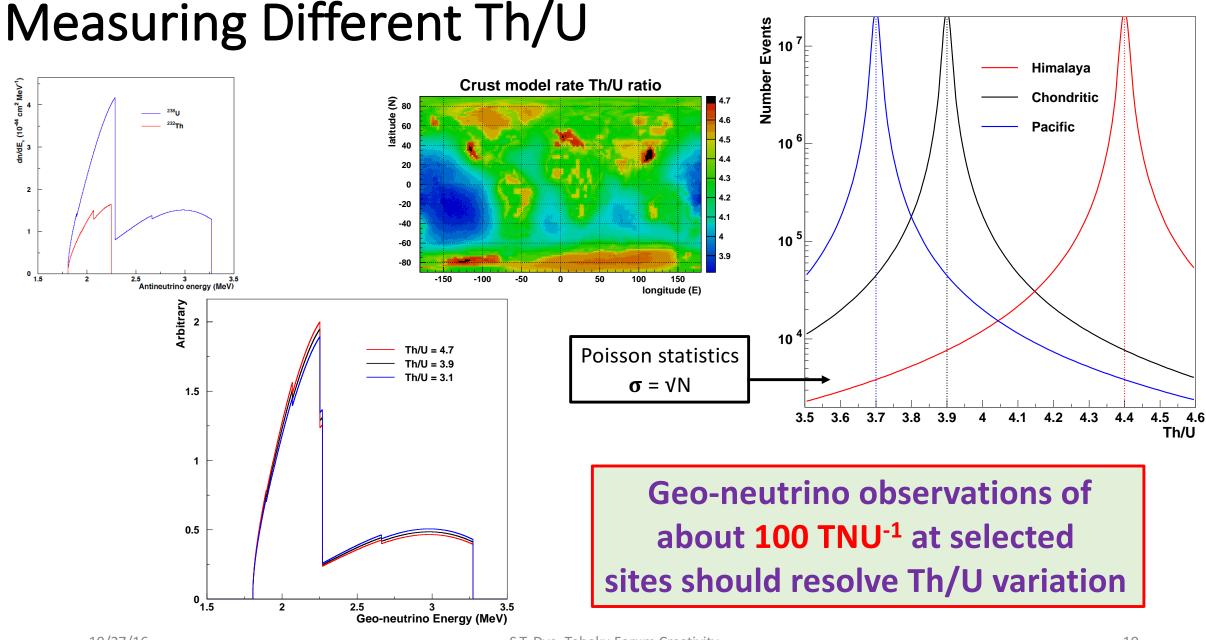
* $a_U = \frac{\phi_{U+Th}}{(l_U + l_{Th} \text{Th/U}) < P_{ee} > G}$

Constant surface flux hypothesis is compatible with fully radiogenic heat model of Earth

Measuring a Rate Different from Constant Rate



Predicted surface flux variation- AGM15


Geo-neutrino observations of about 1 TNU⁻¹ at selected sites should resolve surface rate variation

10/27/16

Observing Geo-neutrino Spectrum

Th geo-neutrinos certainly present but not yet resolved at 1 (1.6?)σ

10/27/16

Status of Geo-Neutrino Observations

	Rate	Spectrum	Flux	Variation	Power	Dir
U + Th	>5o	Th/U < 17	Th/U=3.9		model	
К	K/U		K/U		K/U	
Crust	model		model		model	
Mantle	model		model		model	
LLSVP/ULVZ						
Core						

Demonstrated/Completed
Assumption and/or Model-dependent result
Opportunity

Assumption-Free Model-Independent Results

- Rule out constant surface rate hypothesis
 - Observations at selected sites (Himalaya, Pacific, ...)
 - Exposure requirements not demanding (1 TNU⁻¹)
 - Independently confirm fractionation of HPE between crust and mantle
- Rule out constant spectral shape hypothesis
 - Observations at selected sites (Himalaya, Pacific, ...)
 - Exposure requirements demanding (100 TNU⁻¹)
 - Independently confirm differential fractionation of HPE between crust and mantle
- Direction measurements
 - Imaging of inverse beta decay is scintillating liquid
 - Resolving elastic electron scattering in high pressure TPC

Constant Mantle Assumption

- Measure mantle and crust rates with multiple observations
- Requires one crust estimate with small absolute error

- T = C + M + R + B
- Total (T) = Crust (C) + Mantle (M) + Reactor (R) + Background (B)
- R and B are estimated with good precision
- Signal (S) = Total (T) Reactor (R) Background (B)
- Signal (S) = Crust (C) + Mantle (M)
- S = C + M

- $S_1 = C_1 + M$
- $S_2 = C_2 + M$
- $C_2 = C_1 + (S_2 S_1)$
- $\delta C_2 = \{ (\delta C_1)^2 + (\delta S_2)^2 + (\delta S_1)^2 \}^{1/2}$
- $\delta M = \{ (\delta S_1)^2 + (\delta C_1)^2 \}^{1/2}$
- δS_1 and δS_2 from Poisson statistics
- If Number of events (N) is very high, then $\delta M \approx \delta C_2 \approx \delta C_1$

- $\delta M \cong \delta C_2 \cong \delta C_1$
- Applies to any site C_2 , C_3 , C_4 ... C_N
- Just minimize $\delta \mathbf{C}$ at one site
- Crust studies realize 15% 20% error at continental sites
- If $C_{cont} \approx 40$ TNU, then $\delta C_{cont} \approx \delta M \approx \delta C_N \approx 6$ TNU
- Model-dependent
- What about ocean?

- Set $C_{ocean} \pm \delta C_{ocean} = 3 \pm 1 \text{ TNU}$ (error exaggerated)
- $\delta C_{\text{ocean}} \approx \delta M \approx \delta C_{N} \approx 1 \text{ TNU}$
- But statistics not infinitely large
- Assume N_{ocean} = 100 (10%)
- $\delta C_N = \{ (\delta C_{ocean})^2 + (\delta S_N)^2 + (\delta S_{ocean})^2 \}^{1/2}$
- If S_N and C_N continental, then δ C_N = { (1)² + S_N²/N + (1)² }^{1/2} \lessapprox 2.5 TNU
- If $N_N = 400$ and $S_N = 40$ TNU, continental crust signals C_N measured to $\approx 6\%$
- Mantle signal M measured to $\approx 25\%$
- Precision improves as N_N increases

Conclusions

- Geo-neutrino observations making spectacular progress
- Most results use Th/U=3.9 signal shape assumption
- Further analyses depend on crust modeling
- Constant rate hypothesis still allowed- can rule out with modest exposures at selected sites (Himalaya, Pacific, ...)
- Constant shape hypothesis still allowed- can rule out with demanding expoures at selected sites (Himalaya, Pacific, ...)
- Direction measurements should really help
- Constant mantle assumption enables crust and mantle rate measurements
- Future looks very good!