Superstring amplitudes in genus 0 and 1

Francis Brown
All Souls College, Oxford

String Math
Sendai
18th June 2018
Overview
Superstring perturbation

- Expansion in series of genus \(g \) world-sheets. Integrate over world-sheet moduli space.
- Expansion in \(\alpha' = \ell_S^2 \)

We only consider \(g = 0, 1 \).
Superstring perturbation

- Expansion in series of genus g world-sheets. Integrate over world-sheet moduli space.
- Expansion in $\alpha' = \ell_s^2$

We only consider $g = 0, 1$.

Study integrals of the shape (where $g = 0, 1$)

$$\int_{\mathcal{M}_{g,n}(\mathbb{C})} \exp \left(\sum_{i<j} \alpha' s_{ij} G(z_i - z_j) \right) \omega$$
Superstring perturbation

- Expansion in series of genus g world-sheets. Integrate over world-sheet moduli space.
- Expansion in $\alpha' = \ell_S^2$

We only consider $g = 0, 1$.

Study integrals of the shape (where $g = 0, 1$)

$$\int_{\mathcal{M}_{g,n}(\mathbb{C})} \exp \left(\sum_{i<j} \alpha' s_{ij} G(z_i - z_j) \right) \omega$$

Strategy: first integrate over configuration space of points on a Riemann surface of genus g. Then integrate over the moduli of the Riemann surface.

The last step is redundant in the case $g = 0$.
Beta function is an integral on $\mathcal{M}_{0,4} = \mathbb{P}^1\backslash\{0, 1, \infty\}$

$$\int_0^1 x^{\alpha's-1}(1-x)^{\alpha't-1}dx = \frac{\Gamma(\alpha's)\Gamma(\alpha't)}{\Gamma(\alpha's + \alpha't)}$$
Beta function is an integral on $M_{0,4} = \mathbb{P}^1 \setminus \{0, 1, \infty\}$

\[
\int_0^1 x^{\alpha' s - 1} (1 - x)^{\alpha' t - 1} \, dx = \frac{\Gamma(\alpha' s) \Gamma(\alpha' t)}{\Gamma(\alpha' s + \alpha' t)}
\]

\[
= \frac{s + t}{st\alpha'} \exp \left(\sum_{n=2}^{\infty} (-1)^{n-1} \frac{\zeta(n)}{n} \sigma_n \right)
\]

where $\sigma_n = (\alpha')^n((s + t)^n - s^n - t^n)$. Involves all zeta values.
The beta function is an integral on $\mathcal{M}_{0,4} = \mathbb{P}^1 \setminus \{0, 1, \infty\}$

$$\int_0^1 x^{\alpha's - 1}(1 - x)^{\alpha't - 1} \, dx \quad = \quad \frac{\Gamma(\alpha's)\Gamma(\alpha't)}{\Gamma(\alpha's + \alpha't)}$$

$$= \frac{s + t}{st\alpha'} \exp \left(\sum_{n=2}^{\infty} (-1)^{n-1} \frac{\zeta(n)}{n} \sigma_n \right)$$

where $\sigma_n = (\alpha')^n((s + t)^n - s^n - t^n)$. Involves all zeta values.

Closed string gives complex beta function:

$$\int_{\mathbb{P}^1(\mathbb{C})} |x|^{-2\alpha's - 2} |1 - x|^{-2\alpha't - 2} \, d^2 x \quad = \quad \frac{\Gamma(\alpha's)\Gamma(\alpha't)\Gamma(1 - \alpha's - \alpha't)}{\Gamma(s\alpha' + t\alpha')\Gamma(1 - \alpha's)\Gamma(1 - \alpha't)}$$
Beta function is an integral on $M_{0,4} = \mathbb{P}^1 \backslash \{0, 1, \infty\}$

\[
\int_0^1 x^{\alpha's-1}(1-x)^{\alpha't-1} dx = \frac{\Gamma(\alpha's)\Gamma(\alpha't)}{\Gamma(\alpha's + \alpha't)}
\]

\[
= \frac{s + t}{st\alpha'} \exp \left(\sum_{n=2}^{\infty} (-1)^{n-1} \frac{\zeta(n)}{n} \sigma_n \right)
\]

where $\sigma_n = (\alpha')^n((s + t)^n - s^n - t^n)$. Involves all zeta values.

Closed string gives complex beta function:

\[
\int_{\mathbb{P}^1(\mathbb{C})} |x|^{-2\alpha's-2}|1-x|^{-2\alpha't-2} d^2x = \frac{\Gamma(\alpha's)\Gamma(\alpha't)\Gamma(1 - \alpha's - \alpha't)}{\Gamma(s\alpha' + t\alpha')\Gamma(1 - \alpha's)\Gamma(1 - \alpha't)}
\]

\[
= \frac{s + t}{st\alpha'} \exp \left(\sum_{n=1}^{\infty} \frac{2\zeta(2n + 1)}{2n + 1} \sigma_{2n+1} \right)
\]

where $d^2x = (2\pi i)^{-1} dx \wedge \overline{dx}$. Only involves odd zeta values.
Distinct points z_0, \ldots, z_{n+2} on a Riemann sphere. By $\text{PSL}_2(\mathbb{C})$ action, can place $z_0 = 0, z_{n+1} = 1, z_{n+2} = \infty$.

For a permutation $\pi \in \Sigma_{n+3}$, let

$$z_\pi = \prod_{i \in \mathbb{Z}/(n+3)\mathbb{Z}} (z_\pi(i) - z_\pi(i+1))$$

omitting term $z_{n+2} = \infty$.
Open vs closed amplitudes in genus 0

Distinct points \(z_0, \ldots, z_{n+2} \) on a Riemann sphere. By \(\text{PSL}_2(\mathbb{C}) \) action, can place \(z_0 = 0, z_{n+1} = 1, z_{n+2} = \infty \).

For a permutation \(\pi \in \Sigma_{n+3} \), let

\[
z_\pi = \prod_{i \in \mathbb{Z}/(n+3)\mathbb{Z}} (z_\pi(i) - z_\pi(i+1))
\]

omitting term \(z_{n+2} = \infty \).

Open string amplitudes reduce to \(n! \) integrals:

\[
A_{\text{open}}(\pi) = \int_{0 < z_1 < \ldots < z_n < 1} \prod_{i < j} (z_i - z_j) \alpha' s_{ij} \frac{dz_1 \ldots dz_n}{z_\pi}
\]

Closed string amplitudes reduce to complex integrals:

\[
A_{\text{closed}}(\pi, \pi') = \int_{C_n} \prod_{i < j} |z_i - z_j|^2 \alpha' s_{ij} \frac{dz_1 \ldots dz_n}{z_\pi} \wedge dz_1 \ldots dz_n
\]
Distinct points z_0, \ldots, z_{n+2} on a Riemann sphere. By $\text{PSL}_2(\mathbb{C})$ action, can place $z_0 = 0, z_{n+1} = 1, z_{n+2} = \infty$.

For a permutation $\pi \in \Sigma_{n+3}$, let

$$z_\pi = \prod_{i \in \mathbb{Z}/(n+3)\mathbb{Z}} (z_\pi(i) - z_\pi(i+1))$$

omitting term $z_{n+2} = \infty$.

Open string amplitudes reduce to $n!$ integrals:

$$A^{\text{open}}(\pi) = \int_{0<z_1<\ldots<z_n<1} \prod_{i<j} (z_i - z_j)^{\alpha'_sij} \frac{dz_1 \ldots dz_n}{z_\pi}$$

Closed string amplitudes reduce to complex integrals:

$$A^{\text{closed}}(\pi, \pi') = \int_{\mathbb{C}^n} \prod_{i<j} |z_i - z_j|^{2\alpha'_sij} \frac{dz_1 \ldots dz_n}{z_\pi} \wedge \frac{d\bar{z}_1 \ldots d\bar{z}_n}{\bar{z}_{\pi'}}$$
Kawai-Lewellen-Tye formula (1986)

Expresses closed tree-level ($g = 0$) amplitudes as quadratic expression in open amplitudes: approximately

$$A_{\text{closed}}(\rho, \sigma) = \sum_{\rho, \sigma} A_{\text{open}}(\rho) S(\rho; \sigma) A_{\text{open}}(\sigma)$$

for certain factors $S(\rho; \sigma)$ in the Mandelstam variables s_{ij}.

Expresses closed tree-level ($g = 0$) amplitudes as quadratic expression in open amplitudes: approximately

$$A^{\text{closed}}(\rho, \sigma) = \sum_{\rho, \sigma} A^{\text{open}}(\rho) S(\rho; \sigma) A^{\text{open}}(\sigma)$$

for certain factors $S(\rho; \sigma)$ in the Mandelstam variables s_{ij}.

Slogan:

‘Multiply then integrate $=$ integrate then multiply’
Plan

- Mathematics behind generalised KLT formulae
- Single-valued projections
- (Cosmic Galois group)
- New theory of modular forms from genus 1 string amplitudes
Single-valued integration
The usual theory of integration pairs a differential form ω with a domain of integration σ

$$I = \int_{\sigma} \omega \in \mathbb{C}$$
The usual theory of integration pairs a differential form ω with a domain of integration σ

$$I = \int_{\sigma} \omega \in \mathbb{C}$$

We shall discuss how to pair certain differential forms ω with a ‘dual differential form’ ν

$$I^{sv} = \oint_{\nu} \omega \in \mathbb{R}$$
The usual theory of integration pairs a differential form ω with a domain of integration σ

$$I = \int_\sigma \omega \in \mathbb{C}$$

We shall discuss how to pair certain differential forms ω with a ‘dual differential form’ ν

$$I^{sv} = \oint_\nu \omega \in \mathbb{R}$$

It can be interpreted as a ‘p-adic period at the infinite prime $p = \infty$’. First some examples.
Examples of single-valued functions

The *logarithm* is a multi-valued function on $\mathbb{C}\{0\}$:

$$\log z = \int_1^z \frac{dx}{x}.$$

Changing path of integration results in $\log z \mapsto \log z + 2\pi i \mathbb{Z}$.

The *dilogarithm* (Leibniz) is multi-valued on $\mathbb{C}\{0, 1\}$:

$$\text{Li}_2(z) = \sum_{k \geq 1} \frac{z^k}{k^2}.$$

It has a single-valued version, the Bloch-Wigner dilogarithm $D(z) = 2i \text{Im}(\text{Li}_2(z) + \log |z| \log(1 - z))$.
Examples of single-valued functions

The logarithm is a multi-valued function on \(\mathbb{C}\setminus\{0\} \):

\[
\log z = \int_{1}^{z} \frac{dx}{x}.
\]

Changing path of integration results in \(\log z \mapsto \log z + 2\pi i \mathbb{Z} \).

It has a single-valued version which is well-defined:

\[
2 \text{Re}(\log z) = \log |z|^2
\]
Examples of single-valued functions

The *logarithm* is a multi-valued function on $\mathbb{C}\{0\}$:

$$\log z = \int_{1}^{z} \frac{dx}{x}.$$

Changing path of integration results in $\log z \mapsto \log z + 2\pi i\mathbb{Z}$. It has a single-valued version which is well-defined:

$$2 \Re(\log z) = \log |z|^2$$

The *dilogarithm* (Leibniz) is multi-valued on $\mathbb{C}\{0, 1\}$:

$$\text{Li}_2(z) = \sum_{k \geq 1} \frac{z^k}{k^2}$$
Examples of single-valued functions

The *logarithm* is a multi-valued function on $\mathbb{C}\{0\}$:

$$\log z = \int_1^z \frac{dx}{x}.$$

Changing path of integration results in $\log z \mapsto \log z + 2\pi i\mathbb{Z}$. It has a single-valued version which is well-defined:

$$2 \Re(\log z) = \log |z|^2$$

The *dilogarithm* (Leibniz) is multi-valued on $\mathbb{C}\{0, 1\}$:

$$\text{Li}_2(z) = \sum_{k \geq 1} \frac{z^k}{k^2}$$

It has a single-valued version, the Bloch-Wigner dilogarithm

$$D(z) = 2i\text{Im}(\text{Li}_2(z) + \log |z| \log(1 - z))$$
Multiple zeta values (MZV’s)

Defined by Euler (1730’s),

\[\zeta(n_1, \ldots, n_r) = \sum_{1 \leq k_1 < \ldots < k_r} \frac{1}{k_1^{n_1} \cdots k_r^{n_r}} \]

where \(n_1, \ldots, n_r > 0 \) integers, \(n_r \geq 2 \). They satisfy a plethora of complicated algebraic relations.
Multiple zeta values (MZV’s)

Defined by Euler (1730’s),

\[\zeta(n_1, \ldots, n_r) = \sum_{1 \leq k_1 < \ldots < k_r} \frac{1}{k_1^{n_1} \ldots k_r^{n_r}} \]

where \(n_1, \ldots, n_r > 0 \) integers, \(n_r \geq 2 \). They satisfy a plethora of complicated algebraic relations.

They are values at 1 of multiple polylogarithms (Poincaré, Kummer, Lappo-Danilevskyy):

\[\text{Li}_{n_1, \ldots, n_r}(z) = \sum_{1 \leq k_1 < \ldots < k_r} \frac{z^{n_r}}{k_1^{n_1} \ldots k_r^{n_r}}. \]
Multiple zeta values (MZV’s)

Defined by Euler (1730’s),

$$\zeta(n_1, \ldots, n_r) = \sum_{1 \leq k_1 < \ldots < k_r} \frac{1}{k_1^{n_1} \ldots k_r^{n_r}}$$

where $n_1, \ldots, n_r > 0$ integers, $n_r \geq 2$. They satisfy a plethora of complicated algebraic relations.

They are values at 1 of multiple polylogarithms (Poincaré, Kummer, Lappo-Danilevskyy):

$$\text{Li}_{n_1, \ldots, n_r}(z) = \sum_{1 \leq k_1 < \ldots < k_r} \frac{z^{n_r}}{k_1^{n_1} \ldots k_r^{n_r}} .$$

These are multi-valued functions on $\mathbb{C} \setminus \{0, 1\}$. Coefficients of the universal KZ equation in genus 0. Iterated integrals on $\mathbb{C} \setminus \{0, 1\}$.
Theorem (B. 2004)

By taking combinations of products of real and imaginary parts, there is a canonical way to define single-valued versions

$$\mathcal{L}_{n_1,\ldots,n_r}(z)$$ of $$\text{Li}_{n_1,\ldots,n_r}(z)$$

preserving algebraic and differential (with respect to $$\frac{\partial}{\partial z}$$) relations.

The linear combinations involve coefficients which are MZV’s.
Theorem (B. 2004)

By taking combinations of products of real and imaginary parts, there is a canonical way to define single-valued versions

\[\mathcal{L}_{n_1, \ldots, n_r}(z) \]

of

\[\text{Li}_{n_1, \ldots, n_r}(z) \]

preserving algebraic and differential (with respect to \(\frac{\partial}{\partial z} \)) relations.

The linear combinations involve coefficients which are MZV’s.

Definition 1

The *single-valued multiple zeta values* are defined by

\[\zeta_{sv}(n_1, \ldots, n_r) = \mathcal{L}_{n_1, \ldots, n_r}(1) \]
Theorem (B. 2004)

By taking combinations of products of real and imaginary parts, there is a canonical way to define single-valued versions

\[\mathcal{L}_{n_1,\ldots,n_r}(z) \text{ of } \text{Li}_{n_1,\ldots,n_r}(z) \]

preserving algebraic and differential (with respect to \(\frac{\partial}{\partial z} \)) relations.

The linear combinations involve coefficients which are MZV's.

Definition 1

The single-valued multiple zeta values are defined by

\[\zeta_{sv}(n_1, \ldots, n_r) = \mathcal{L}_{n_1,\ldots,n_r}(1) \]

Example:

\[\zeta_{sv}(2) = D(1) = 0 \]
Single-valued MZV’s continued

\[\zeta_{sv}(2n) = 0 \]
\[\zeta_{sv}(2n + 1) = 2\zeta(2n + 1) \]
The first non-trivial ζ_{sv} is at weight 11:

$$\zeta_{sv}(3, 5, 3) = 2\zeta(3, 5, 3) - 2\zeta(3)\zeta(5) - 10\zeta(3)\zeta(5)$$

Theorem (B. 2013)

The single-valued MZV’s satisfy all ‘motivic’ relations for MZV’s. ('Motivically') there is a ‘single-valued projection’ $\zeta_{sv} : \zeta \mapsto \zeta_{sv}$.

Warning: Does not exist for general period integrals.

\[
\begin{align*}
\zeta_{sv}(2n) &= 0 \\
\zeta_{sv}(2n + 1) &= 2\zeta(2n + 1) \\
\zeta_{sv}(5, 3) &= 14\zeta(3)\zeta(5)
\end{align*}
\]
Single-valued MZV’s continued

\[
\begin{align*}
\zeta_{sv}(2n) &= 0 \\
\zeta_{sv}(2n + 1) &= 2\zeta(2n + 1)
\end{align*}
\]

\[
\zeta_{sv}(5, 3) = 14\zeta(3)\zeta(5)
\]

The first non-trivial svMZV is at weight 11:

\[
\zeta_{sv}(3, 5, 3) = 2\zeta(3, 5, 3) - 2\zeta(3)\zeta(3, 5) - 10\zeta(3)^2\zeta(5)
\]
Single-valued MZV’s continued

\[\zeta_{sv}(2n) = 0 \]
\[\zeta_{sv}(2n + 1) = 2\zeta(2n + 1) \]
\[\zeta_{sv}(5, 3) = 14\zeta(3)\zeta(5) \]

The first non-trivial svMZV is at weight 11:

\[\zeta_{sv}(3, 5, 3) = 2\zeta(3, 5, 3) - 2\zeta(3)\zeta(3, 5) - 10\zeta(3)^2\zeta(5) \]

Theorem (B. 2013)

The single-valued MZV’s satisfy all ‘motivic’ relations for MZV’s.
Single-valued MZV’s continued

\[
\begin{align*}
\zeta_{sv}(2n) &= 0 \\
\zeta_{sv}(2n + 1) &= 2\zeta(2n + 1) \\
\zeta_{sv}(5, 3) &= 14\zeta(3)\zeta(5)
\end{align*}
\]

The first non-trivial svMZV is at weight 11:

\[
\zeta_{sv}(3, 5, 3) = 2\zeta(3, 5, 3) - 2\zeta(3)\zeta(3, 5) - 10\zeta(3)^2\zeta(5)
\]

Theorem (B. 2013)

The single-valued MZV’s satisfy all ‘motivic’ relations for MZV’s. (‘Motivically’) there is a ‘single-valued projection’

\[\text{sv} : \zeta \mapsto \zeta_{sv}.\]
Single-valued MZV’s continued

\[\zeta_{sv}(2n) = 0 \]
\[\zeta_{sv}(2n + 1) = 2\zeta(2n + 1) \]
\[\zeta_{sv}(5, 3) = 14\zeta(3)\zeta(5) \]

The first non-trivial svMZV is at weight 11:
\[\zeta_{sv}(3, 5, 3) = 2\zeta(3, 5, 3) - 2\zeta(3)\zeta(3, 5) - 10\zeta(3)^2\zeta(5) \]

Theorem (B. 2013)
The single-valued MZV’s satisfy all ‘motivic’ relations for MZV’s.

(‘Motivically’) there is a ‘single-valued projection’

\[sv : \zeta \mapsto \zeta_{sv} \]

Warning: Does not exist for general period integrals.
Theorem

The open superstring amplitudes for $g = 0$ admit a canonical Laurent expansion in s_{ij} whose coefficients are multiple zeta values.

Follows from conjecture of Goncharov-Manin (B. 2006), Terasoma, Schlotterer, Stieberger, Broödel, ...
Stieberger’s conjecture

Theorem
The open superstring amplitudes for $g = 0$ admit a canonical
Laurent expansion in s_{ij} whose coefficients are multiple zeta values

Follows from conjecture of Goncharov-Manin (B. 2006), Terasoma, Schlotterer, Stieberger, Broël, . . .

Stieberger and Stieberger-Taylor made the following conjecture:

Theorem (B. and Dupont ’18)

$$sv A^{\text{open}}(\pi) = A^{\text{closed}}(\pi; \text{id})$$

Apply sv term by term in the Laurent expansion in s_{ij}.
X a smooth algebraic variety over \(\mathbb{Q} \). A period integral on \(X \)

\[
I = \int_{\sigma} \omega
\]

where \(\omega \in \Omega^n(X; \mathbb{Q}) \) algebraic differential form. Chain \(\sigma \subset X(\mathbb{C}) \) has boundary \(\partial \sigma \subset D(\mathbb{C}) \) where \(D \subset X \) a divisor.
X a smooth algebraic variety over \mathbb{Q}. A *period integral* on X

$$I = \int_\sigma \omega$$

where $\omega \in \Omega^n(X; \mathbb{Q})$ algebraic differential form. Chain $\sigma \subset X(\mathbb{C})$ has boundary $\partial \sigma \subset D(\mathbb{C})$ where $D \subset X$ a divisor.

$$[\omega] \in H^n_{dR}(X, D)$$
$$[\sigma] \in H_n(X(\mathbb{C}), D(\mathbb{C})) = H^n_B(X, D)^\vee$$

Integration is a pairing

$$H^n_{dR} \otimes H_n \longrightarrow \mathbb{C}$$
X a smooth algebraic variety over \mathbb{Q}. A \textit{period integral} on X

$$I = \int_{\sigma} \omega$$

where $\omega \in \Omega^n(X; \mathbb{Q})$ algebraic differential form. Chain $\sigma \subset X(\mathbb{C})$ has boundary $\partial \sigma \subset D(\mathbb{C})$ where $D \subset X$ a divisor.

$$[\omega] \in H^n_{dR}(X, D)$$

$$[\sigma] \in H_n(X(\mathbb{C}), D(\mathbb{C})) = H^n_B(X, D)^\vee$$

Integration is a pairing

$$H^n_{dR} \otimes H_n \longrightarrow \mathbb{C}$$

It defines a canonical isomorphism (Grothendieck 1964):

$$H^n_{dR}(X, D) \otimes \mathbb{C} \sim H^n_B(X, D) \otimes \mathbb{C}$$
Complex conjugation is continuous

\[(X(\mathbb{C}), D(\mathbb{C})) \xrightarrow{\sim} (X(\mathbb{C}), D(\mathbb{C}))\]

It induces the *real Frobenius*

\[F_{\infty} : H^*_B(X, D) \xrightarrow{\sim} H^*_B(X, D)\]
Complex conjugation is continuous

\[(X(\mathbb{C}), D(\mathbb{C})) \sim (X(\mathbb{C}), D(\mathbb{C}))\]

It induces the \textit{real Frobenius}

\[F_{\infty} : H^n_B(X, D) \sim H^n_B(X, D)\]

We get

\[H^n_{dR}(X, D) \otimes \mathbb{C} \sim H^n_B(X, D) \otimes \mathbb{C} \xrightarrow{F_{\infty}} H^n_B(X, D) \otimes \mathbb{C} \sim H^n_{dR}(X, D) \otimes \mathbb{C}\]
Complex conjugation

Complex conjugation is continuous

$$(X(\mathbb{C}), D(\mathbb{C})) \sim (X(\mathbb{C}), D(\mathbb{C}))$$

It induces the real Frobenius

$$F_{\infty} : H^B_{\infty}(X, D) \sim H^B_{\infty}(X, D)$$

We get

$$H^n_{dR}(X, D) \otimes \mathbb{C} \sim H^B_{\infty}(X, D) \otimes \mathbb{C} \xrightarrow{F_{\infty}} H^B_{\infty}(X, D) \otimes \mathbb{C} \xleftarrow{\sim} H^n_{dR}(X, D) \otimes \mathbb{C}$$

It defines a real comparison isomorphism

$$sv : H^n_{dR}(X, D) \otimes \mathbb{R} \sim H^n_{dR}(X, D) \otimes \mathbb{R}$$
This gives a way to pair forms with ‘dual forms’:

\[[\omega] \in H^n_{dR}(X, D) \]
\[[\nu] \in H^n_{dR}(X, D)^\vee \]

to get a real number, which we denote by

\[\int_{\nu} \omega = \langle [\nu], sv [\omega] \rangle \in \mathbb{R} \]

It satisfies the usual rules of integration (bilinearity, change of variables, etc). How to make sense of a ‘dual form’?
Duality

Suppose X smooth projective of dimension n, $A \cup B \subset X$ normal crossing divisor. Then Poincaré-Verdier:

$$H^k_{dR}(X \setminus A, B)^\vee \cong H^{2n-k}_{dR}(X \setminus B, A)(n)$$

Use to replace ‘dual forms’ with actual forms.
Suppose X smooth projective of dimension n, $A \cup B \subset X$ normal crossing divisor. Then Poincaré-Verdier:

$$H^k_{dR}(X \setminus A, B) \cong H^{2n-k}_{dR}(X \setminus B, A)(n)$$

Use to replace ‘dual forms’ with actual forms.

Theorem (B.-Dupont 2018)

Let $\omega \in \Omega^n_X(\log A)$, $\nu \in \Omega^n_X(\log B)$ meromorphic, log. sings. Then

$$\oint_\nu \omega = \frac{1}{(2\pi i)^n} \int_{X(\mathbb{C})} \omega \wedge \overline{\nu},$$

which is Lebesgue integrable.
Duality

Suppose X smooth projective of dimension n, $A \cup B \subset X$ normal crossing divisor. Then Poincaré-Verdier:

$$H^k_{dR}(X \setminus A, B)^\vee \cong H^{2n-k}_{dR}(X \setminus B, A)(n)$$

Use to replace ‘dual forms’ with actual forms.

Theorem (B.-Dupont 2018)

Let $\omega \in \Omega^*_X(\log A)$, $\nu \in \Omega^*_X(\log B)$ meromorphic, log. sings. Then

$$\oint_{\nu} \omega = \frac{1}{(2\pi i)^n} \int_{X(\mathbb{C})} \omega \wedge \overline{\nu},$$

which is Lebesgue integrable.

Warning. LHS defined in general. RHS badly defined for non-logarithmic ω, ν. Kazhdan-Felder. Very subtle issues.
Theorem (B.-Dupont 2018)

In the same setting,

$$\int_{X(\mathbb{C})} \omega \wedge \nu = \sum_{\sigma, \tau} \langle \sigma, \tau \rangle \int_{\sigma} \omega \int_{\bar{\tau}} \nu$$

sum over σ a relative homology basis of $H_n(X \setminus A, B)$ and τ a relative homology basis of $H_n(X \setminus B, A)$.
Theorem (B.-Dupont 2018)

In the same setting,

$$\int_{X(\mathbb{C})} \omega \wedge \nu = \sum_{\sigma, \tau} \langle \sigma, \tau \rangle \int_{\sigma} \omega \int_{\tau} \nu$$

sum over σ a relative homology basis of $H_n(X \setminus A, B)$ and τ a relative homology basis of $H_n(X \setminus B, A)$.

‘KLT’ slogan revisited:

“Multiply then integrate = integrate then multiply”
Recall

\[\log x = \int_1^x \frac{dz}{z} \]

period of

\[H^1(\mathbb{P}^1 \setminus \{0, \infty\}, \{1, x\}) . \]
Example: logarithm

Recall

$$\log x = \int_1^\infty \frac{dz}{z}$$

period of

$$H^1(\mathbb{P}^1 \setminus \{0, \infty\}, \{1, x\}) .$$

Its single-valued version served two ways:

$$\log |x|^2 = \frac{1}{2\pi i} \int_{\mathbb{P}^1(\mathbb{C})} \frac{dz}{z} \wedge \frac{(\overline{x} - 1)d\overline{z}}{(\overline{z} - 1)(\overline{z} - \overline{x})}$$

$$= \int_1^\infty \frac{dz}{z} . 1 + 1 . \int_1^\infty \frac{dz}{z}$$
Example: logarithm

Recall

$$\log x = \int_{1}^{x} \frac{dz}{z}$$

period of

$$H^1(\mathbb{P}^1 \setminus \{0, \infty\}, \{1, x\}) .$$

Its single-valued version served two ways:

$$\log |x|^2 = \frac{1}{2\pi i} \int_{\mathbb{P}^1(\mathbb{C})} \frac{dz}{z} \wedge \frac{(\bar{x} - 1)d\bar{z}}{(\bar{z} - 1)(\bar{z} - \bar{x})}$$

$$= \int_{1}^{x} \frac{dz}{z} \cdot 1 + 1 \cdot \int_{1}^{\bar{x}} \frac{dz}{z}$$
Moduli spaces $\mathcal{M}_{0,n}$
Moduli of Riemann spheres with \(n \) ordered marked points

Let \(n \geq 4 \).

\[
\mathcal{M}_{0,n} = \{(z_1, \ldots, z_n) \in \mathbb{P}^1 : z_i \neq z_j\}/\text{PGL}_2
\]

Place \(z_1 = 0, z_{n-1} = 1, z_n = \infty \). Then

\[
\mathcal{M}_{0,4} \cong \mathbb{P}^1 \setminus \{0, 1, \infty\}
\]
Dihedral coordinates

Let $\mathcal{M}_{0,S}$ be moduli of R.S. with marked points indexed by a set S. Suppose that S has a dihedral (= cyclic up to reversal) order.

Every chord c in the polygon S determines two consecutive pairs

$$c = \{z_i, z_{i+1}, z_j, z_{j+1}\}$$

Forgetting all other marked points defines a dihedral coordinate

$$u_c : \mathcal{M}_{0,S} \longrightarrow \mathcal{M}_{0,4} \subset \mathbb{P}^1$$
Dihedral coordinates

Let \(\mathcal{M}_{0,S} \) be moduli of R.S. with marked points indexed by a set \(S \). Suppose that \(S \) has a dihedral (= cyclic up to reversal) order.

Every chord \(c \) in the polygon \(S \) determines two consecutive pairs

\[
c = \{z_i, z_{i+1}, z_j, z_{j+1}\}
\]

Forgetting all other marked points defines a \textit{dihedral coordinate}

\[
u_c : \mathcal{M}_{0,S} \longrightarrow \mathcal{M}_{0,4} \subset \mathbb{P}^1
\]

Example: On \(\mathcal{M}_{0,5} \) there are five such

\[
1 - z_1, \quad \frac{z_1}{z_2}, \quad \frac{z_2 - z_1}{z_2(1 - z_1)}, \quad \frac{1 - z_2}{1 - z_1}, \quad z_2
\]
Let $\mathcal{M}_{0,S}$ be moduli of R.S. with marked points indexed by a set S. Suppose that S has a dihedral (=: cyclic up to reversal) order.

Every chord c in the polygon S determines two consecutive pairs

\[c = \{z_i, z_{i+1}, z_j, z_{j+1}\} \]

Forgetting all other marked points defines a *dihedral coordinate*

\[u_c : \mathcal{M}_{0,S} \to \mathcal{M}_{0,4} \subseteq \mathbb{P}^1 \]

Example: On $\mathcal{M}_{0,5}$ there are five such

\[1 - z_1, \quad \frac{z_1}{z_2}, \quad \frac{z_2 - z_1}{z_2(1 - z_1)}, \quad \frac{1 - z_2}{1 - z_1}, \quad z_2 \]

General dihedral coordinates are *not* cluster coordinates.
Every open string amplitude can be written in dihedral coordinates:

\[
I^{\text{open}} = \int_{X} \Omega \quad \text{where} \quad \Omega = \left(\prod_{c} u_{c}^{s_{c}} \right) \omega
\]

where \(X = \{ 0 < u_{c} < 1 \} \), for some \(\omega \in \Omega^{n}(\log(\partial M_{0,S})) \).
Renormalised amplitudes

Every open string amplitude can be written in dihedral coordinates:

\[I^{\text{open}} = \int_X \Omega \quad \text{where} \quad \Omega = \left(\prod_c u_c^s \right) \omega \]

where \(X = \{0 < u_c < 1\} \), for some \(\omega \in \Omega^n(\log(\partial \overline{\mathcal{M}}_{0,S})) \).

Theorem (canonical renormalisation) (B.-Dupont '18)

\[I^{\text{open}} = \sum_J \frac{1}{s_J} \int_{X_J} \Omega_J^{\text{ren}} \quad \text{where} \quad s_J = \prod_{c \in J} s_c \]

\(J \) are sets of non-crossing chords in \(S \)-gon. Each integrand \(\Omega_J^{\text{ren}} \) is convergent for \(\Re(s_c) > -1 \), so has Taylor expansion.

Poles in \(s_c \) \(\longleftrightarrow \) poles of \(\omega \) along boundary strata of \(\overline{\mathcal{M}}_{0,S} \)
The identical formalism works for closed string amplitudes:

\[I_{\text{closed}} = \int_{\mathcal{M}_{0,n}(\mathbb{C})} \Omega \quad \text{where} \quad \Omega = \left(\prod_{c} |u_c|^{2s_c} \right)\omega \wedge \bar{\nu}_X \]

for some \(\nu_X \) ‘dual to’ \(X \). We have

\[I_{\text{closed}} = \sum_{j} \frac{1}{s_j} \int_{\mathcal{M}_{0,j}(\mathbb{C})} \Omega_{j}^{\text{ren}} \wedge \bar{\nu}_j \]
The identical formalism works for closed string amplitudes:

\[I_{\text{closed}} = \int_{\mathcal{M}_{0,n}(\mathbb{C})} \Omega \quad \text{where} \quad \Omega = \left(\prod_c |u_c|^{2s_c} \right) \omega \wedge \bar{\nu}_X \]

for some \(\nu_X \) ‘dual to’ \(X \). We have

\[I_{\text{closed}} = \sum_j \frac{1}{s_j} \int_{\mathcal{M}_{0,j}(\mathbb{C})} \Omega_{\text{ren}}^j \wedge \bar{\nu}_j \]

Each term on the right is the single-valued projection of the corresponding term in the renormalisation of the open amplitude, and proves the formula conjectured by Stieberger:

\[\text{sv } I_{\text{open}} = I_{\text{closed}} \]
Different point of view: s_{ij} as complex numbers, not formal variables.
Different point of view: s_{ij} as complex numbers, not formal variables. Koba-Nielsen rank one connection on $\mathcal{M}_{0,S}$:

\[\nabla_s = d - \sum_{i<j} s_{ij} \frac{d(z_i - z_j)}{z_i - z_j} \]

Horizontal sections form a local system

\[\mathcal{L}_s \cong \mathbb{C} \prod_{i<j} (z_i - z_j)^{s_{ij}}. \]
Different point of view: s_{ij} as complex numbers, not formal variables. Koba-Nielsen rank one connection on $\mathcal{M}_{0,S}$:

$$\nabla_s = d - \sum_{i<j} s_{ij} \frac{d(z_i - z_j)}{z_i - z_j}$$

Horizontal sections form a local system

$$\mathcal{L}_s \cong \mathbb{C} \prod_{i<j} (z_i - z_j)^{s_{ij}}.$$

Apply sv formalism to the self-dual object

$$H_{dR} = H^n_{dR}(\mathcal{M}_{0,S}, \nabla_s \oplus \nabla_{-s}) \quad , \quad H_B = H^n(\mathcal{M}_{0,S}, \mathcal{L}_s \oplus \mathcal{L}_{-s})$$
KLT and SV for cohomology with coefficients

Different point of view: s_{ij} as complex numbers, not formal variables. Koba-Nielsen rank one connection on $\mathcal{M}_{0,S}$:

$$\nabla_\Sigma = d - \sum_{i<j} s_{ij} \frac{d(z_i - z_j)}{z_i - z_j}$$

Horizontal sections form a local system

$$\mathcal{L}_\Sigma \cong \mathbb{C} \prod_{i<j} (z_i - z_j)^{s_{ij}}.$$}

Apply sv formalism to the self-dual object

$$H_{dR} = H^n_{dR}(\mathcal{M}_{0,S}, \nabla_\Sigma \oplus \nabla_{-\Sigma}) \quad , \quad H_B = H^n(\mathcal{M}_{0,S}, \mathcal{L}_\Sigma \oplus \mathcal{L}_{-\Sigma})$$

Immediately deduce KLT-type formula involving intersection numbers on H_B. The latter were computed by K. Matsumoto, Mimachi-Yoshida, . . . , Mizera, and implies KLT formula.
Genus 1
Consider now the *closed* string amplitudes

\[
\int_{\mathcal{M}_{1,n}(\mathbb{C})} \exp \left(\sum_{i<j} \alpha' s_{ij} G(z_i - z_j) \right)
\]

The Greens functions involve logarithms of theta functions.
Consider now the *closed* string amplitudes

\[
\int_{\mathcal{M}_{1,n}(\mathbb{C})} \exp \left(\sum_{i<j} \alpha' s_{ij} G(z_i - z_j) \right)
\]

The Greens functions involve logarithms of theta functions.

We have fibration

\[\mathcal{M}_{1,n} \longrightarrow \mathcal{M}_{1,1} \]

Fibers \(\cong\) configuration space of \(n\) points on universal elliptic curve.
Consider now the *closed* string amplitudes

$$\int \mathcal{M}_{1,n}(\mathbb{C}) \exp \left(\sum_{i<j} \alpha' s_{ij} G(z_i - z_j) \right)$$

The Greens functions involve logarithms of theta functions.

We have fibration

$$\mathcal{M}_{1,n} \longrightarrow \mathcal{M}_{1,1}$$

Fibers \cong configuration space of n points on universal elliptic curve.

Strategy (Green, Russo, d’Hoker, Vanhove,...) integrate first in the fiber, to obtain functions on

$$\mathcal{M}_{1,1}(\mathbb{C}) \cong \text{SL}_2(\mathbb{Z}) \backslash \mathbb{H}$$

Obtain $\text{SL}_2(\mathbb{Z})$-invariant functions of the modulus $\tau \in \mathbb{H}$.
Modular graph functions

The fiber integrals can be computed explicitly. To every graph G, associate a nested lattice sum $I_G(\tau)$. It is a modular-invariant

$$I_G\left(\frac{a\tau + b}{c\tau + d}\right) = I_G(\tau)$$

where the sum is over $(m_1, n_1), (m_2, n_2) \in \mathbb{Z}^2$ such that $(m_1, n_1) \neq (0, 0), (m_2, n_2) \neq (0, 0), (m_1 + m_2, n_1 + n_2) \neq (0, 0)$.
Modular graph functions

The fiber integrals can be computed explicitly. To every graph G, associate a nested lattice sum $I_G(\tau)$. It is a modular-invariant

$$I_G\left(\frac{a\tau + b}{c\tau + d}\right) = I_G(\tau)$$

Example:

$G =$

![Graph Diagram](image-url)
Modular graph functions

The fiber integrals can be computed explicitly. To every graph G, associate a nested lattice sum $I_G(\tau)$. It is a modular-invariant

$$I_G\left(\frac{a\tau + b}{c\tau + d}\right) = I_G(\tau)$$

Example:

$$I_G = \pi^{-3} \sum_{m_1,n_1,m_2,n_2} \frac{\text{Im}(\tau)^3}{|m_1\tau + n_1|^2|m_2\tau + n_2|^2|(m_1 + m_2)\tau + n_1 + n_2|^2}$$

where the sum is over $(m_1, n_1) \in \mathbb{Z}^2$, $(m_2, n_2) \in \mathbb{Z}^2$ such that

$$(m_1, n_1) \neq (0, 0), (m_2, n_2) \neq (0, 0), (m_1 + m_2, n_1 + n_2) \neq (0, 0).$$
Zagier proved that $I_G(\tau)$ in the example is a linear combination of $\zeta(3)$ and a real-analytic Eisenstein series.
Zagier proved that $I_G(\tau)$ in the example is a linear combination of $\zeta(3)$ and a real-analytic Eisenstein series.

Question

What is the mathematical class of functions which describes superstring amplitudes in genus 1?
Zagier proved that $I_G(\tau)$ in the example is a linear combination of $\zeta(3)$ and a real-analytic Eisenstein series.

Question

What is the mathematical class of functions which describes superstring amplitudes in genus 1?

- Fourier-type expansion in $q = \exp 2\pi i \tau$.

$$I_G = \sum_k \sum_{m,n \geq 0} a_{m,n}^{(k)} \text{Im}(\tau)^k q^m \overline{q}^n$$
Zagier proved that $I_G(\tau)$ in the example is a linear combination of $\zeta(3)$ and a real-analytic Eisenstein series.

Question

What is the mathematical class of functions which describes superstring amplitudes in genus 1?

- Fourier-type expansion in $q = \exp 2\pi i \tau$.

$$I_G = \sum_k \sum_{m,n \geq 0} a^{(k)}_{m,n} \text{Im}(\tau)^k q^m \bar{q}^n$$

- (Zerbini) Coeffs. $a^{(k)}_{m,n}$ are conjecturally single-valued MZV's
Zagier proved that $I_G(\tau)$ in the example is a linear combination of $\zeta(3)$ and a real-analytic Eisenstein series.

Question

What is the mathematical class of functions which describes superstring amplitudes in genus 1?

- Fourier-type expansion in $q = \exp 2\pi i \tau$.

$$I_G = \sum_k \sum_{m,n \geq 0} a^{(k)}_{m,n} \text{Im}(\tau)^k q^m \overline{q}^n$$

- (Zerbini) Coeffs. $a^{(k)}_{m,n}$ are conjecturally single-valued MZV's
- Many algebraic identities between I_G for different G
Zagier proved that $I_G(\tau)$ in the example is a linear combination of $\zeta(3)$ and a real-analytic Eisenstein series.

Question

What is the mathematical class of functions which describes superstring amplitudes in genus 1?

- Fourier-type expansion in $q = \exp 2\pi i \tau$.

$$I_G = \sum_{k} \sum_{m,n \geq 0} a_{m,n}^{(k)} \text{Im}(\tau)^k q^m q^n$$

- (Zerbini) Coeffs. $a_{m,n}^{(k)}$ are conjecturally single-valued MZV’s
- Many algebraic identities between I_G for different G
- Hierarchical equations with respect to hyperbolic Laplacian.
There exists a natural family \mathcal{MI}^E of non-holomorphic modular forms satisfying all the desired properties (+ more).
A new class of non-holomorphic modular forms

Theorem (1707.01230/1708.03354)

There exists a natural family $\mathcal{M}\mathcal{E}$ of non-holomorphic modular forms satisfying all the desired properties (+ more).

Each form is uniquely determined from a finite amount of data (i.e., weight, and finite number of Fourier coefficients).
Theorem (1707.01230/1708.03354)

There exists a natural family \mathcal{MF} of non-holomorphic modular forms satisfying all the desired properties (+ more).

Each form is uniquely determined from a finite amount of data (i.e., weight, and finite number of Fourier coefficients).

Idea of the construction: single-valued machine.
A new class of non-holomorphic modular forms

Theorem (1707.01230/1708.03354)

There exists a natural family \mathcal{MIE} of non-holomorphic modular forms satisfying all the desired properties (+ more).

Each form is uniquely determined from a finite amount of data (i.e., weight, and finite number of Fourier coefficients).

Idea of the construction: single-valued machine. Take real and imaginary parts of iterated integrals of Eisenstein series

$$G_{2k} = -\frac{b_{2k}}{4k} + \sum_{n \geq 1} \sigma_{2k-1}(n)q^n$$

in such a way as to make them modular.
Modular analogue of Bloch-Wigner dilogarithm:

\[
\text{Im} \int_T^\infty \mathcal{G}_{2a} \mathcal{G}_{2b} - \text{Re} \left(\int_T^\infty \mathcal{G}_{2a} \right) \times \int_T^\infty \mathcal{G}_{2b} \\
+ \text{correction terms involving integrals of cusp forms}
\]
Example

Modular analogue of Bloch-Wigner dilogarithm:

\[\text{Im} \int_{\mathbb{T}}^{\infty} G_{2a} G_{2b} - \text{Re} \left(\int_{\mathbb{T}}^{\infty} G_{2a} \right) \times \int_{\mathbb{T}}^{\infty} G_{2b} \]

+ correction terms involving integrals of cusp forms

Related to

- Universal Mixed elliptic motives
- Mock modular forms
- Weak harmonic Maass forms
- Subtle questions in number theory
KLT formula and ‘closed vs open’ string amplitudes are part of a general mathematical theory of single-valued integration.
Conclusions

- KLT formula and ‘closed vs open’ string amplitudes are part of a general mathematical theory of single-valued integration.

- Interaction between superstring amplitudes in genus 1 and number theory. Some interesting open questions.
Conclusions

- KLT formula and ‘closed vs open’ string amplitudes are part of a general mathematical theory of single-valued integration.

- Interaction between superstring amplitudes in genus 1 and number theory. Some interesting open questions.

- Genus 0 and 1 amplitudes described by universal KZ and universal KZB connections. Higher genus? Canonical connections on completions of fundamental groupoids.
Conclusions

- KLT formula and ‘closed vs open’ string amplitudes are part of a general mathematical theory of single-valued integration.

- Interaction between superstring amplitudes in genus 1 and number theory. Some interesting open questions.

- Genus 0 and 1 amplitudes described by universal KZ and universal KZB connections. Higher genus? Canonical connections on completions of fundamental groupoids.

- Does the two-tower principle (Grothendieck) play a role: periods in genus 0, 1 generate periods in all higher genera?