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Superstring perturbation

Expansion in series of genus g world-sheets. Integrate over
world-sheet moduli space.

Expansion in α′ = `2S

We only consider g = 0, 1.

Study integrals of the shape (where g = 0, 1)∫
Mg,n(C)

exp
(∑

i<j

α′sijG (zi − zj)
)
ω

Strategy: first integrate over configuration space of points on a
Riemann surface of genus g . Then integrate over the moduli of
the Riemann surface.

The last step is redundant in the case g = 0.
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M0,4: Veneziano and Virasoro-Shapiro

Beta function is an integral on M0,4 = P1\{0, 1,∞}∫ 1

0
xα

′s−1(1− x)α
′t−1dx =

Γ(α′s)Γ(α′t)

Γ(α′s + α′t)

=
s + t

stα′
exp

( ∞∑
n=2

(−1)n−1 ζ(n)

n
σn

)
where σn = (α′)n((s + t)n − sn − tn). Involves all zeta values.

Closed string gives complex beta function:∫
P1(C)

|x |−2α′s−2|1−x |−2α′t−2d2x =
Γ(α′s)Γ(α′t)Γ(1− α′s − α′t)

Γ(sα′ + tα′)Γ(1− α′s)Γ(1− α′t)

=
s + t

stα′
exp

( ∞∑
n=1

2ζ(2n + 1)

2n + 1
σ2n+1

)
where d2x = (2πi)−1 dx ∧ dx . Only involves odd zeta values.
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Open vs closed amplitudes in genus 0

Distinct points z0, . . . , zn+2 on a Riemann sphere. By PSL2(C)
action, can place z0 = 0, zn+1 = 1, zn+2 =∞.

For a permutation π ∈ Σn+3, let

zπ =
∏

i∈Z/(n+3)Z

(zπ(i) − zπ(i+1))

omitting term zn+2 =∞.

Open string amplitudes reduce to n! integrals:

Aopen(π) =

∫
0<z1<...<zn<1

∏
i<j

(zi − zj)
α′sij

dz1 . . . dzn

zπ

Closed string amplitudes reduce to complex integrals:

Aclosed(π, π′) =

∫
Cn

∏
i<j

|zi − zj |2α
′sij

dz1 . . . dzn

zπ
∧ dz1 . . . dzn

zπ′
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Kawai-Lewellen-Tye formula (1986)

Expresses closed tree-level (g = 0) amplitudes as quadratic
expression in open amplitudes: approximately

Aclosed(ρ, σ) =
∑
ρ,σ

Aopen(ρ)S(ρ;σ)Aopen(σ)

for certain factors S(ρ;σ) in the Mandelstam variables sij .

Slogan:

‘Multiply then integrate = integrate then multiply’
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Plan

Mathematics behind generalised KLT formulae

Single-valued projections

(Cosmic Galois group)

New theory of modular forms from genus 1 string amplitudes

7 / 33



Single-valued integration
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Single-valued integration (joint with C. Dupont)

The usual theory of integration pairs a differential form ω with a
domain of integration σ

I =

∫
σ
ω ∈ C

We shall discuss how to pair certain differential forms ω with a
‘dual differential form’ ν

I sv = S

∫
ν
ω ∈ R

It can be interpreted as a ‘p-adic period at the infinite prime
p =∞’. First some examples.
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Examples of single-valued functions

The logarithm is a multi-valued function on C\{0}:

log z =

∫ z

1

dx

x
.

Changing path of integration results in log z 7→ log z + 2πiZ.

It has a single-valued version which is well-defined:

2 Re(log z) = log |z |2

The dilogarithm (Leibniz) is multi-valued on C\{0, 1}:

Li2(z) =
∑
k≥1

zk

k2

It has a single-valued version, the Bloch-Wigner dilogarithm

D(z) = 2iIm(Li2(z) + log |z | log(1− z))
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Multiple zeta values (MZV’s)

Defined by Euler (1730’s),

ζ(n1, . . . , nr ) =
∑

1≤k1<...<kr

1

kn1
1 . . . knr

r

where n1, . . . , nr > 0 integers, nr ≥ 2. They satisfy a plethora of
complicated algebraic relations.

They are values at 1 of multiple polylogarithms (Poincaré,
Kummer, Lappo-Danilevskyy):

Lin1,...,nr (z) =
∑

1≤k1<...<kr

znr

kn1
1 . . . knr

r
.

These are multi-valued functions on C\{0, 1}. Coefficients of the
universal KZ equation in genus 0. Iterated integrals on C\{0, 1}.
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Single-valued multiple zeta values

Theorem (B. 2004)

By taking combinations of products of real and imaginary parts,
there is a canonical way to define single-valued versions

Ln1,...,nr (z) of Lin1,...,nr (z)

preserving algebraic and differential (with respect to ∂
∂z ) relations.

The linear combinations involve coefficients which are MZV’s.

Definition 1

The single-valued multiple zeta values are defined by

ζsv(n1, . . . , nr ) = Ln1,...,nr (1)

Example:
ζsv (2) = D(1) = 0
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Single-valued MZV’s continued

ζsv(2n) = 0

ζsv(2n + 1) = 2ζ(2n + 1)

ζsv(5, 3) = 14ζ(3)ζ(5)

The first non-trivial svMZV is at weight 11:

ζsv(3, 5, 3) = 2ζ(3, 5, 3)− 2ζ(3)ζ(3, 5)− 10ζ(3)2ζ(5)

Theorem (B. 2013)

The single-valued MZV’s satisfy all ‘motivic’ relations for MZV’s.

(‘Motivically’) there is a ‘single-valued projection’

sv : ζ 7→ ζsv .

Warning: Does not exist for general period integrals.
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Stieberger’s conjecture

Theorem

The open superstring amplitudes for g = 0 admit a canonical
Laurent expansion in sij whose coefficients are multiple zeta values

Follows from conjecture of Goncharov-Manin (B. 2006), Terasoma,
Schlotterer, Stieberger, Broëdel, . . .

Stieberger and Stieberger-Taylor made the following conjecture:

Theorem (B. and Dupont ’18)

sv Aopen(π) = Aclosed(π; id)

Apply sv term by term in the Laurent expansion in sij .
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Periods

X a smooth algebraic variety over Q. A period integral on X

I =

∫
σ
ω

where ω ∈ Ωn(X ; Q) algebraic differential form. Chain σ ⊂ X (C)
has boundary ∂σ ⊂ D(C) where D ⊂ X a divisor.

[ω] ∈ Hn
dR(X ,D)

[σ] ∈ Hn(X (C),D(C)) = Hn
B(X ,D)∨

Integration is a pairing

Hn
dR ⊗ Hn −→ C

It defines a canonical isomorphism (Grothendieck 1964):

Hn
dR(X ,D)⊗ C ∼−→ Hn

B(X ,D)⊗ C

15 / 33



Periods

X a smooth algebraic variety over Q. A period integral on X

I =

∫
σ
ω

where ω ∈ Ωn(X ; Q) algebraic differential form. Chain σ ⊂ X (C)
has boundary ∂σ ⊂ D(C) where D ⊂ X a divisor.

[ω] ∈ Hn
dR(X ,D)

[σ] ∈ Hn(X (C),D(C)) = Hn
B(X ,D)∨

Integration is a pairing

Hn
dR ⊗ Hn −→ C

It defines a canonical isomorphism (Grothendieck 1964):

Hn
dR(X ,D)⊗ C ∼−→ Hn

B(X ,D)⊗ C

15 / 33



Periods

X a smooth algebraic variety over Q. A period integral on X

I =

∫
σ
ω

where ω ∈ Ωn(X ; Q) algebraic differential form. Chain σ ⊂ X (C)
has boundary ∂σ ⊂ D(C) where D ⊂ X a divisor.

[ω] ∈ Hn
dR(X ,D)

[σ] ∈ Hn(X (C),D(C)) = Hn
B(X ,D)∨

Integration is a pairing

Hn
dR ⊗ Hn −→ C

It defines a canonical isomorphism (Grothendieck 1964):

Hn
dR(X ,D)⊗ C ∼−→ Hn

B(X ,D)⊗ C

15 / 33



Complex conjugation

Complex conjugation is continuous

(X (C),D(C))
∼−→ (X (C),D(C))

It induces the real Frobenius

F∞ : Hn
B(X ,D)

∼−→ Hn
B(X ,D)

We get

Hn
dR(X ,D)⊗C ∼→ Hn

B(X ,D)⊗C F∞−→ Hn
B(X ,D)⊗C ∼← Hn

dR(X ,D)⊗C

It defines a real comparison isomorphism

sv : Hn
dR(X ,D)⊗ R ∼−→ Hn

dR(X ,D)⊗ R
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Single-valued periods

This gives a way to pair forms with ‘dual forms’:

[ω] ∈ Hn
dR(X ,D)

[ν] ∈ Hn
dR(X ,D)∨

to get a real number, which we denote by

S

∫
ν
ω = 〈[ν], sv [ω]〉 ∈ R

It satisfies the usual rules of integration (bilinearity, change of
variables, etc). How to make sense of a ‘dual form’?

17 / 33



Duality

Suppose X smooth projective of dimension n, A ∪ B ⊂ X normal
crossing divisor. Then Poincaré-Verdier:

Hk
dR(X\A,B)∨ ∼= H2n−k

dR (X\B,A)(n)

Use to replace ‘dual forms’ with actual forms.

Theorem (B.-Dupont 2018)

Let ω ∈ Ωn
X (log A), ν ∈ Ωn

X (log B) meromorphic, log. sings. Then

S

∫
ν
ω =

1

(2πi)n

∫
X (C)

ω ∧ ν ,

which is Lebesgue integrable.

Warning. LHS defined in general. RHS badly defined for
non-logarithmic ω, ν. Kazhdan-Felder. Very subtle issues.
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‘KLT-formula’ for algebraic varieties

Theorem (B.-Dupont 2018)

In the same setting,∫
X (C)

ω ∧ ν =
∑
σ,τ

〈σ, τ〉
∫
σ
ω

∫
τ
ν

sum over σ a relative homology basis of Hn(X\A,B) and τ a
relative homology basis of Hn(X\B,A).

‘KLT’ slogan revisited:

“Multiply then integrate = integrate then multiply”
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Example: logarithm

Recall

log x =

∫ x

1

dz

z

period of
H1(P1\{0,∞}, {1, x}) .

Its single-valued version served two ways:

log |x |2 =
1

2πi

∫
P1(C)

dz

z
∧ (x − 1)dz

(z − 1)(z − x)

=

∫ x

1

dz

z
. 1 + 1 .

∫ x

1

dz

z
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Moduli spacesM0,n

21 / 33



Moduli of Riemann spheres with n ordered marked points

Let n ≥ 4.

M0,n = {(z1, . . . , zn) ∈ P1 : zi 6= zj}/PGL2

Place z1 = 0, zn−1 = 1, zn =∞. Then

M0,4
∼= P1\{0, 1,∞}

M0,5 0

1

∞

0 1 ∞
22 / 33



Dihedral coordinates

LetM0,S be moduli of R.S. with marked points indexed by a set S .
Suppose that S has a dihedral (= cyclic up to reversal) order.

Every chord c in the polygon S determines two consecutive pairs

c = {zi , zi+1, zj , zj+1}

Forgetting all other marked points defines a dihedral coordinate

uc :M0,S −→M0,4 ⊂ P1

Example: On M0,5 there are five such

1− z1 ,
z1

z2
,

z2 − z1

z2(1− z1)
,

1− z2

1− z1
, z2

General dihedral coordinates are not cluster coordinates.
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Renormalised amplitudes

Every open string amplitude can be written in dihedral coordinates:

I open =

∫
X

Ω where Ω =
(∏

c

usc
c

)
ω

where X = {0 < uc < 1}, for some ω ∈ Ωn(log(∂M0,S)).

Theorem (canonical renormalisation) (B.-Dupont ’18)

I open =
∑
J

1

sJ

∫
X J

Ωren
J where sJ =

∏
c∈J

sc

J are sets of non-crossing chords in S-gon. Each integrand Ωren
J is

convergent for Re(sc) > −1, so has Taylor expansion.

Poles in sc ←→ poles of ω along boundary strata of M0,S
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Renormalised amplitudes

The identical formalism works for closed string amplitudes:

I closed =

∫
M0,n(C)

Ω where Ω =
(∏

c

|uc |2sc
)
ω ∧ νX

for some νX ‘dual to’ X . We have

I closed =
∑
J

1

sJ

∫
M0,J(C)

Ωren
J ∧ νJ

Each term on the right is the single-valued projection of the
corresponding term in the renormalisation of the open amplitude,
and proves the formula conjectured by Stieberger:

sv I open = I closed
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KLT and SV for cohomology with coefficients

Different point of view: sij as complex numbers, not formal
variables.

Koba-Nielsen rank one connection on M0,S :

∇s = d −
∑
i<j

sij
d(zi − zj)

zi − zj

Horizontal sections form a local system

Ls
∼= C

∏
i<j

(zi − zj)
sij .

Apply sv formalism to the self-dual object

HdR = Hn
dR(M0,S ,∇s ⊕∇−s) , HB = Hn(M0,S ,Ls ⊕ L−s)

Immediately deduce KLT-type formula involving intersection
numbers on HB . The latter were computed by K. Matsumoto,
Mimachi-Yoshida, . . . , Mizera, and implies KLT formula.
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Genus 1
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Consider now the closed string amplitudes∫
M1,n(C)

exp (
∑
i<j

α′sijG (zi − zj))

The Greens functions involve logarithms of theta functions.

We have fibration
M1,n −→M1,1

Fibers ∼= configuration space of n points on universal elliptic curve.

Strategy (Green, Russo, d’Hoker, Vanhove,...) integrate first in the
fiber, to obtain functions on

M1,1(C) ∼= SL2(Z)\\H

Obtain SL2(Z)-invariant functions of the modulus τ ∈ H.
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Modular graph functions

The fiber integrals can be computed explicitly. To every graph G ,
associate a nested lattice sum IG (τ). It is a modular-invariant

IG

( aτ + b

cτ + d

)
= IG (τ)

Example:

G =

IG = π−3
′∑

m1,n1,m2,n2

Im(τ)3

|m1τ + n1|2|m2τ + n2|2|(m1 + m2)τ + n1 + n2|2

where the sum is over (m1, n1) ∈ Z2, (m2, n2) ∈ Z2 such that

(m1, n1) 6= (0, 0), (m2, n2) 6= (0, 0), (m1 + m2, n1 + n2) 6= (0, 0) .
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Properties

Zagier proved that IG (τ) in the example is a linear combination of
ζ(3) and a real-analytic Eisenstein series.

Question

What is the mathematical class of functions which describes
superstring amplitudes in genus 1?

Fourier-type expansion in q = exp 2πiτ .

IG =
∑
k

∑
m,n≥0

a
(k)
m,n Im(τ)k qmqn

(Zerbini) Coeffs. a
(k)
m,n are conjecturally single-valued MZV’s

Many algebraic identities between IG for different G

Hierarchical equations with respect to hyperbolic Laplacian.
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A new class of non-holomorphic modular forms

Theorem (1707.01230/1708.03354)

There exists a natural family MIE of non-holomorphic modular
forms satisfying all the desired properties (+ more).

Each form is uniquely determined from a finite amount of data
(i.e., weight, and finite number of Fourier coefficients).

Idea of the construction: single-valued machine. Take real and
imaginary parts of iterated integrals of Eisenstein series

G2k = −b2k

4k
+
∑
n≥1

σ2k−1(n)qn

in such a way as to make them modular.
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Example

Modular analogue of Bloch-Wigner dilogarithm:

Im
∫ ∞
τ

G2aG2b − Re
(∫ ∞

τ
G2a

)
×
∫ ∞
τ

G2b

+ correction terms involving integrals of cusp forms

Related to

Universal Mixed elliptic motives

Mock modular forms

Weak harmonic Maass forms

Subtle questions in number theory
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Conclusions

KLT formula and ‘closed vs open’ string amplitudes are part
of a general mathematical theory of single-valued integration.

Interaction between superstring amplitudes in genus 1 and
number theory. Some interesting open questions.

Genus 0 and 1 amplitudes described by universal KZ and
universal KZB connections. Higher genus? Canonical
connections on completions of fundamental groupoids.

Does the two-tower principle (Grothendieck) play a role:
periods in genus 0, 1 generate periods in all higher genera?
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