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String compactifications

Mathematics (manifolds, complex, algebraic)

F-theory, Calabi-Yau (elliptically fibered)

Local, Global and Local TO Global principles
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From F-theory: We learned: a correspondence

§ dim Lie algebras and certain representations

§ Œ
§ smooth elliptically fibered Calabi-Yau varieties

[1 ] dim Lie algebras and certain representations local, global

Œ
[2 ] smooth

:::::::::
elliptically fibered

:::::::::
Calabi-Yau varieties

ù:

Rich geometry, physics, with singularities.
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[1 ] dim Lie algebras and certain representations local, global

Œ
[2 ] smooth

:::::::::
elliptically fibered

:::::::::
Calabi-Yau varieties

Evidence:

- Prove R, a formula relating [1] and [2] (local to global principles) when:

dimpX q “ 3, X , elliptic, Calabi-Yau with singularities (Q-factorial terminal)

Application

Birational extension of Kodaira’s classification of singular fibers of relatively minimal

elliptic surfaces to higher dimensions.

- (Multiple) origins of algebras and representations

Applications

(Strings ø ) Outlook in F -theory, SCFT, . . .
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(Some) Ingredients:

§ invariants of singularities:

discrepancies (terminal ¨ ¨ ¨ ), Minor-Tyurina’s numbers, ¨ ¨ ¨

§ Div {Pic, AND Q-factoriality

§ Homology , cohomology, topological Euler characteristic, computed via

Mayer-Vietoris

§ Poincaré duality

§ deformations

§ Local, Global and Local to Global Principles, Global to Local Principles
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§ Genus one (elliptic) fibrations.

§ Singularities. Which singularities? Claim: Q-factorial; terminal, klt.

§ Algebras, representations and geometry.

§ Local, global invariants, local to global principles , R and applications

Lesson learned from Strings and Math.
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1. Genus one fibration / F-theory compactifications

⇡ : Y Ñ B is a genus one (elliptic fibration with section �) Ø

Y

⇡

✏✏

Ep » T
2

⇡

✏✏

? _oo

B U Q p? _oo

Y

⇡

✏✏

Ep » T
2? _oo

⇡

✏✏

B

�

HH

U Q p? _oo

Ep (with a marked point).

U open dense,

⌃ “ B z U : ramification locus. (Assume: ⌃ ‰ H.)
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Why study genus one fibrations

§ Birational geometry: X , such that dimpX q “ n and pX q “ n ´ 1 is birationally

equivalent to a genus one fibration (Iitaka’s fibration)

§ Birational geometry:

Test case: geometry in dim “ n and log dim “ n ´ 1 (“Fujino-Mori”)

§ Arithmetic: when there is a section (elliptic) fibrations

§ Study of Calabi-Yau X : D... with genus one fibrations

§ F-theory “compactifications” (⌃ Ø 7-branes of II -B on B .)
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Weierstrass models

Weierstrass equation:

(Local form) W : y2 “ x
3

` f psjqx ` gpsjq, sj P pBq.

W might be singular.

Theorem (Nakayama)

Elliptic fibrations X
bir .
– Weierstrass models W .
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Example: dimpW q “ 2: W : y2 “ x
3

` f puqx ` gpuq, u P C;

⌃ : 4f 3 ´ 27g2
“ 0.

f puq and gpuq determine:

the type of singularity of W AND the fiber over ⌃ in the minimal resolution X Ñ W .

;

Kodaira’s classification of singular fibers of minimal elliptic surfaces :

extended Dynkin diagrams when there is a section:

14



Example: dimpW q “ 2: W : y2 “ x
3

` f puqx ` gpuq, u P C;

⌃ : 4f 3 ´ 27g2
“ 0.

f puq and gpuq determine:

the type of singularity of W AND the fiber over ⌃ in the minimal resolution X Ñ W .

;

Kodaira’s classification of singular fibers of minimal elliptic surfaces :

extended Dynkin diagrams when there is a section:

14



Example: dimpW q “ 2: W : y2 “ x
3

` f puqx ` gpuq, u P C;

⌃ : 4f 3 ´ 27g2
“ 0.

f puq and gpuq determine:

the type of singularity of W AND the fiber over ⌃ in the minimal resolution X Ñ W .

;

Kodaira’s classification of singular fibers of minimal elliptic surfaces :

extended Dynkin diagrams when there is a section:

14



Example: dimpW q “ 2: W : y2 “ x
3

` f puqx ` gpuq, u P C;

⌃ : 4f 3 ´ 27g2
“ 0.

f puq and gpuq determine:

the type of singularity of W AND the fiber over ⌃ in the minimal resolution X Ñ W .

;

Kodaira’s classification of singular fibers of minimal elliptic surfaces :

extended Dynkin diagrams when there is a section:

14



Example: dimpW q “ 2: W : y2 “ x
3

` f puqx ` gpuq, u P C;

⌃ : 4f 3 ´ 27g2
“ 0.

f puq and gpuq determine:

the type of singularity of W AND the fiber over ⌃ in the minimal resolution X Ñ W .

;

Kodaira’s classification of singular fibers of minimal elliptic surfaces :

extended Dynkin diagrams when there is a section:

14














































































































§ Genus one (elliptic) fibrations.

§ Singularities. Which singularities? Claim: Q-factorial; terminal, klt.

§ Algebras, representations and geometry.

§ Local, global invariants, local to global principles, R and applications

16



§ Genus one (elliptic) fibrations.

§ Singularities. Which singularities? Claim: Q-factorial; terminal, klt.

§ Algebras, representations and geometry.

§ Local, global invariants, local to global principles, R and applications

16



§ Genus one (elliptic) fibrations.

§ Singularities. Which singularities? Claim: Q-factorial; terminal, klt.

§ Algebras, representations and geometry.

§ Local, global invariants, local to global principles, R and applications

16



2. Singularities: Q-factorial, terminal, canonical, klt

Theorem (Grassi - D. Wen (to appear, 2018))

Let ⇡̃ : X̃ Ñ B̃ be any genus one fibration. There is a (bir.) commutative diagram:

X̃

⇡̃
✏✏

//___ X

⇡
✏✏

B̃ //___ B

KX “ ⇡˚
pKB ` �q,

X p
bir
„ X̃ q with at most: Q-factorial, terminal singularities

pB ,�q, with at most: Q-factorial, klt singularities.

IF:

A. Technical hypotheses from Mori MP hold, pX̃ q • 0 and no multiple fibers.

B. dimpX̃ q § 4 and ⇡̃ does not have without multiple fibers.

C. dimpX̃ q § 3.

17
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Applications

1. Elliptic fibrations X , with Q-fact., terminal, sings.
bir .
Ô Weierstrass models W .

2. If X is Calabi-Yau: X Õ pB ,⌃q.
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Definitions

Definition

X is Q-factorial if any Weil divisor is Q-Cartier.

Example

1. Q-factorial: X , toric: every cone in the fan is simplicial.

2. X Ä P4 of equation x0g0 ` x1g1 “ 0 is NOT Q-factorial

Definition

X has terminal (canonical, klt) singularities –Ñ: Y Ñ X resolution,

KY “ f
˚
pKX q `

∞
k
bkEk with bk ° 0 (bk • 0, bk ° ´1) and Ek exceptional divisors

Example

X , with Q-factorial terminal singularities, KX » OX , then: for any resolution Y ,

KY ‰ OY .

; “non-Calabi-Yau resolvable singularities”
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Singularities, Strings

Singularities play a central role in string theory

ù Gauge symmetries

ù Wrapping branes or strings on shrinking cycles

ù Transitions through singularities

Typical analysis: move to a space without singularities, via resolution or deformation.

It is important to work directly with suitable singularities

It is important, possible and interesting to work directly with singularities
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It is important to to work directly with suitable singularities:

X , Calabi-Yau, dimpX q • 4 is NOT generically smooth.

X , Calabi-Yau, dimpX q “ 3, X is generally smooth, but not always.

Examples in F-theory literature, where Q-factorial terminal singularities occur.

Example

Transverse intersections of nodal divisors on 3-folds (Q-factorial conifold).

It governs general behavior of the Jacobian of genus-one fibrations.
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§ Genus one (elliptic) fibrations.

§ Singularities. Q-factorial; terminal, klt.

§ Algebras, representations and geometry.

§ Local, global invariants, local to global principles, R and applications
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3. Algebras, representations, geometry

For W :

Kodaira fiber In II III IV I
˚
n IV

˚
III

˚
II

˚

algebra: A-D-E supnq teu sup2q sup3q sop2n`8q e6 e7 e8

Question posed by Arnold, 1976:

to find a common origin of all the A-D-E classification theorems, and to substitute a a

priori proofs to a posteriori verifications of a parallelism of the classifications

Conjectures-Theorem (slice): Brieskorn-Grothendieck, 1970
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Stratified discriminant locus ⌃

X

⇡
✏✏

B ⌃? _oo ⌃1? _oo

smooth, codim1

OO

X

⇡
✏✏

B ⌃z⌃1? _oo ⌃2? _oo

smooth, codim2

OO

etc.
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Math: “A Brieskorn-Grothendieck program”, local, global, local to global

X Ñ B , X Q-factorial, klt, B smooth in codimension 2.

§ Semi-simple Lie algebras g and some of their representations

ú geometry of genus one fibrations and degenerations of fibers,
§ ⌃1 ú algebras g
§ ⌃2 ú algebras and some of their representations

Q-factorial terminal Gorenstein singularities

ú Tjurina’s numbers, dimensions of versal complex deformations of the singularities

Implement it:

1. Verify consistency with physics expectations

2. Prove results in mathematics.
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Analysis in the String Literature, dimpX q “ 3 (from „ mid 90s)

Physics constructions use X smooth;

Assignments

verify consistencies for X Calabi-Yau (anomalies cancellations formulae)

27



Analysis in the String Literature, dimpX q “ 3 (from „ mid 90s)

Physics constructions use X smooth;

Assignments

verify consistencies for X Calabi-Yau (anomalies cancellations formulae)

27



Analysis in the String Literature, dimpX q “ 3 (from „ mid 90s)

Physics constructions use X smooth;

Assignments

verify consistencies for X Calabi-Yau

(anomalies cancellations formulae)

27



Analysis in the String Literature, dimpX q “ 3 (from „ mid 90s)

Physics constructions use X smooth;

Assignments

verify consistencies for X Calabi-Yau (anomalies cancellations formulae)

27



Assignments, from mid ’90s:

⌃1 ú algebras g

1. (Witten method)

Intersections Ñ “Cartan” of g (roots).

2. (Following Tate, [Grassi-Morrison 2011])

Assume elliptic fibration and generalize Tate’s algorithm.

3. (Following String Junctions, [Grassi-Halverson-Shaneson,

G-H-S, Long-Tian, 2018, for most non simply-laced])

Deform to nodal fibers.
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⌃2 ú algebras and some of their representations

[A ] (Refined Witten method)

Intersections Ñ weights of representations of g.

[B ] (Following Katz-Vafa, Brieskorn-Grothiendick-Tyurina] [Grassi-Morrison 2011])

Assume elliptic fibration (and care with multiplicity of the representation)

Conjecture

[A] –Ñ [B]

Conjecture

(3) ›Ñ [A] and [B]

29
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Assignments, in the presence of singularities: Grassi-Weigand; Shaneson

⌃1 ú algebras g

1. (Refined Witten method)

Assume Poincarè duality over Q, Z valued over relevant Weil divisors.

Intersections Ñ “Cartan” of g.

X
2. (Refined Tate)

Assume elliptic fibration, B smooth in codimension 2 (WLOG for C-Y) and

generalize Tate’s algorithm. X

⌃2 ú algebras and some of their representations

1. (Refined Witten method)

Intersections Ñ weights of representations of g (relative Mori cone) X
2. (Following Katz-Vafa)

Assume elliptic fibration (and more care with multiplicity of the representation) X

We write explicitly the above assignments and verify them under general hypothesis

and in other cases.
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§ Genus one (elliptic) fibrations.

§ Singularities. Q-factorial; terminal, klt.

§ Algebras, representations and geometry.

§ Local, global invariants, local to global principles, R and applications
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x x Cy Or Factorial terminal

to
B

general conditions

B µh yEi
genus g

E E

E I z s 22 stratification

E E s general



Correspondence, Calabi-Yau with Q-factorial terminal singularities

⌃, stratified –Ñ Algebras, representations and multiplicity

⌃1
Ñ Algebras, representations: adjpg ´ 1q

⌃2
Ñ algebras, representations: ⇢0pg

1
´ gq, ⇢Q “charged matter”

⌃2
Ñ Tyurina’s number of P .
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Number Type g ⇢0 ⇢
Q`

1
⇢
Q`

2
pdim adjqch pdim ⇢0q

ch
dim p⇢

Q`
1
q
ch

dim p⇢
Q`

2
q
ch

1 I1 teu – – 0 0 0 0

2 I2 sup2q – fund 2 0 0 2

3 I3 sup3q – fund 6 0 0 3

4 I2k , k • 2 sppkq ⇤2
0 – fund 2k2 2k2 ´ 2k 0 2k

5 I2k`1, k • 1 sppkq ⇤2
` 2 ˆ fund 1

2 fund fund 2k2 2k2 ` 2k k 2k

6 In, n • 4 supnq ⇤2 fund n
2

´ n 0 1
2pn

2
´ nq n

7 II teu – 0 0 0

8 III sup2q 2 ˆ fund 2 0 4

9 IV spp1q ⇤2
` 2 ˆ fund 1

2 fund 2 4 1

10 IV sup3q 3 ˆ fund 6 0 9

11 I
˚
0 g2 7 – 12 6 0

12 I
˚
0 spinp7q vect – spin 18 6 0 8

13 I
˚
0 spinp8q vect spin˘ 24 0 8 8

14 I
˚
1 spinp9q vect – spin 32 8 0 16

15 I
˚
1 spinp10q vect spin˘ 40 0 10 16

16 I
˚
2 spinp11q vect – 1

2 spin 50 10 0 16

17 I
˚
2 spinp12q vect 1

2 spin˘ 60 0 12 16

18 I
˚
n , n • 3 sop2n ` 7q vect – NM 2pn`3q

2 2n`6 0 NM

19 I
˚
n , n • 3 sop2n ` 8q vect NM 2pn`3qpn`4q 0 2n`8 NM

20 IV
˚ f4 26 – 48 24 0

21 IV
˚ e6 27 72 0 27

22 III
˚ e7

1
256 126 0 28

23 II
˚ e8 NM 240 0 NM

In 1, 5, 7 : Q-factorial terminal singularities at P ;

topologically the fiber through P is the same as the general fiber over ⌃1.

In 7 the singularity induces a non-trivial representation associated to Q
`
2 .
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˚ f4 26 – 48 24 0

21 IV
˚ e6 27 72 0 27

22 III
˚ e7

1
256 126 0 28

23 II
˚ e8 NM 240 0 NM

In 1, 5, 7 : Q-factorial terminal singularities at P ;

topologically the fiber through P is the same as the general fiber over ⌃1.

In 7 the singularity induces a non-trivial representation associated to Q
`
2 .
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4. Local, global invariants, local to global principles, R and applications
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Definition (The charged dimension of ⇢)

h Cartan of g. pdim ⇢qch “ dimp⇢q ´ dimpker⇢|hq.

Example: pdim adjqch “ dim g ´ dim h “ dim g ´ rkh “ .

pU , 0q Ä Cn`1, isolated hypersurface singularity P “ 0, defined by f “ 0.

Definition (The Milnor number of P)

mpPq “ dimCpCtx1, . . . , xn`1u{†
Bf

Bx1
, . . . ,

Bf

Bxn`1
°q .

Definition (The Tyurina number ⌧pPq)

⌧pPq “ dimCpCtx1, . . . , xn`1u{ † f ,
Bf

Bx1
, . . . ,

Bf

Bxn`1
°q.

versal deformations of the hypersurface singularity at P in U

Saito: ⌧pPq “ mpPq Ø P is a weighted hypersurface singularity.

38



Definition (The charged dimension of ⇢)

h Cartan of g. pdim ⇢qch “ dimp⇢q ´ dimpker⇢|hq.

Example: pdim adjqch “ dim g ´ dim h “ dim g ´ rkh “ .

pU , 0q Ä Cn`1, isolated hypersurface singularity P “ 0, defined by f “ 0.

Definition (The Milnor number of P)

mpPq “ dimCpCtx1, . . . , xn`1u{†
Bf

Bx1
, . . . ,

Bf

Bxn`1
°q .

Definition (The Tyurina number ⌧pPq)

⌧pPq “ dimCpCtx1, . . . , xn`1u{ † f ,
Bf

Bx1
, . . . ,

Bf

Bxn`1
°q.

versal deformations of the hypersurface singularity at P in U

Saito: ⌧pPq “ mpPq Ø P is a weighted hypersurface singularity.

38



Definition (The charged dimension of ⇢)

h Cartan of g. pdim ⇢qch “ dimp⇢q ´ dimpker⇢|hq.

Example: pdim adjqch “ dim g ´ dim h “ dim g ´ rkh “ .

pU , 0q Ä Cn`1, isolated hypersurface singularity P “ 0, defined by f “ 0.

Definition (The Milnor number of P)

mpPq “ dimCpCtx1, . . . , xn`1u{†
Bf

Bx1
, . . . ,

Bf

Bxn`1
°q .

Definition (The Tyurina number ⌧pPq)

⌧pPq “ dimCpCtx1, . . . , xn`1u{ † f ,
Bf

Bx1
, . . . ,

Bf

Bxn`1
°q.

versal deformations of the hypersurface singularity at P in U

Saito: ⌧pPq “ mpPq Ø P is a weighted hypersurface singularity. 38



The formula R: local to global.
Application: Global to local, Birational Kodaira classification of “singular fibers”.

Theorem

30K 2
B

`
1
2 p�toppX q `

∞
P
mpPqq, P singular of X with Milnor number mpPq,

is independent of the choice of the particular minimal model X .

Theorem (Local to Global (simplified version))

30K 2
B

`
1
2 p�toppX q `

∞
P
mpPqq “

“ pg ´ 1qpdim adjqch ` pg
1
´ gqpdim ⇢0qch `

∞
Q

pdim ⇢Qqch `
∞

P
⌧pPq

Birational extension of Kodaira’s classification of singular fibers of relatively minimal

elliptic surfaces to higher dimensions (codimension one and two strata):

Theorem

The dimensions of the representations are birational invariants of the minimal

model of the elliptic fibrations.
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Application: Birational Kodaira classification of “singular fibers”

In fact,

X smooth Calabi-Yau threefold: �toppX q “ 2tKaDefpX q ´ CxDefpX qu.

KaDefpX q, CxDefpX q are birational invariants of the minimal model.

[Ò Hodge duality, and Poincaré duality.]

Theorem

X Calabi-Yau threefold with Q-factorial terminal singularities:

�toppX q “ 2tKaDefpX q ´ CxDefpX qu `
∞

P
mpPq.

Need: Poincaré dualtiy (with singularities).

Also mpPq is a birational invariant of the minimal model
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Applications; Global to Local

Conjecture

(1) It always holds.

(2) It holds for Multiple fibers as well.

(2) For Calabi-Yau Õ discrete gauged symmetry (Anderson-Grassi-Gray-Ohelmann)
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Applications

Cancellations of anomalies unveiled and extended to the singular cases.

42



Analysis in the String Literature for dimX “ 3 (from „ mid 90s) and X smooth)

The anomaly cancellation requirements lead to:

1. (Global:) 0 “ pnH ´ nV ` 273 ´ 29nT q and 0 “ p
9´nT

8 q

nT : tensor multiplets, nV vector multiplets, nH hypermultiplets.

2. (Local:) Conditions on Tradj in adjoint representation, Tr⇢ in suitable

representations ⇢s, with multiplicities, and local geometries around ⌃1 and ⌃2.

Dictionary:

nV “ dimpG q,

nT “ h
1,1

pBq ´ 1 ùKaDefpX q

nH “ Hch ` CxDefpX q ` 1,
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Analysis in the String Literature, dimpX q “ 3 (from „ mid 90s)

X Ñ B , X , Calabi-Yau, smooth, B smooth.

The anomaly cancellation requirements lead to:

h
2,1

pX q ` 1 ` Hch ´ dimpG q “ 273 ´ 29nT .

AND

9 ´ nT “ K
2
B

(always verified, Noether’s formula)

(Local) Conditions on Tradj in adjoint representation, Tr⇢ in a suitable representation ⇢,

and local geometries around ⌃1 and ⌃2.
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Applications: Strings

Ô propose and extend cancellations of anomalies in the presence of singularities.

We also verify it in other, di↵erent, examples.
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§ Genus one (elliptic) fibrations.

§ Singularities, Q-factorial; terminal, klt.

§ Algebras, representations and geometry

§ Local, global invariants, local to global principles , R and applications

Opportunities with Singularities.

Towards: higher dimensions.
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Anomalies pX Ñ B ;G q

ù Y , principal G -bundle G (the “gauge bundle”).

ù F curvature of the gauge connection

ù R curvature of the Levi–Civita connection.

Consistent quantum theory:

ù

the “anomalies” of this theory MUST VANISH.
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Schwarz: (N“1 theories in six dimensions with a semisimple group G )

The anomaly polynomial:

 ¨ A ¨ trR
4

` B ¨ ptrR2
q
2

`
1

6
trR2

ÿ
X

p2q
i

´
2

3

ÿ
X

p4q
i

` 4
ÿ

i†j

Yij

must vanish.

 constant,

X
pnq
i

“ Tradj F
n

i ´

ÿ

⇢

n⇢ Tr⇢ F
n

i Yij “

ÿ

⇢,�

n⇢� Tr⇢ F
2
i Tr� F

2
j ,

n⇢ is a suitable multiplicity in the matter representation, and ni ,j multiplicity of

representation p⇢,�q of Gi ˆ Gj .
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6
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X

p2q
i

´
2

3

ÿ
X

p4q
i
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i†j

Yij

1. A “ pnH ´ nV ` 273 ´ 29nT q and B “ p
9´nT

8 q

nT : tensor multiplets, nV vector multiplets, nH hypermultiplets.

2. Dictionary:

nV “ dimpG q,

nT “ h
1,1

pBq ´ 1

nH “ Hch ` h
2,1

pX q ` 1,

3. Tradj in adjoint representation, Tr⇢ in a suitable representation ⇢,
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The anomaly vanishes if:

nH ´ nV ` 273 ´ 29nT “ 0. (1)

AND

p
9 ´ nT

8
q ¨ ptrR2

q
2

`
1

6
trR2

ÿ
X

p2q
i

´
2

3

ÿ
X

p4q
i

` 4
ÿ

i†j

Yij “ 0

(2)

Green-Schwarz says (??) vanishes if it can be written as:

´
D trR2

`

ÿ
Di tr F

2
i

¯
¨

´
E trR2

`

ÿ
Ei tr F

2
i

¯
. (3)

Sadov say (??) can be taken as:

1

2

ˆ
1

2
KB trR2

` 2
ÿ

⌃i tr F
2
i

˙
¨

ˆ
1

2
KB trR2

` 2
ÿ

⌃i tr F
2
i

˙
.
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The anomaly cancellation requirements lead to:

h
2,1

pX q ` 1 ` Hch ´ dimpG q “ 273 ´ 29nT .

AND

9 ´ nT “ K
2
B

(always verified, Noether’s formula)

´6KB ¨ ⌃i ptr F
2
i q “ ´Tradj F

2
i `

ÿ

⇢

n⇢ Tr⇢ F
2
i

3⌃i
2
ptr F 2

i q
2

“ ´Tradj F
4
i `

ÿ

⇢

n⇢ Tr⇢ F
4
i

⌃i ¨ ⌃jptr F
2
i qptr F 2

j q “

ÿ

⇢,�

n⇢� Tr⇢ F
2
i Tr� F

2
j

52



The anomaly cancellation requirements lead to:

h
2,1

pX q ` 1 ` Hch ´ dimpG q “ 273 ´ 29nT .

AND

9 ´ nT “ K
2
B

(always verified, Noether’s formula)

´6KB ¨ ⌃i ptr F
2
i q “ ´Tradj F

2
i `

ÿ

⇢

n⇢ Tr⇢ F
2
i

3⌃i
2
ptr F 2

i q
2

“ ´Tradj F
4
i `

ÿ

⇢

n⇢ Tr⇢ F
4
i

⌃i ¨ ⌃jptr F
2
i qptr F 2

j q “

ÿ

⇢,�

n⇢� Tr⇢ F
2
i Tr� F

2
j

52



The anomaly cancellation requirements lead to:

h
2,1

pX q ` 1 ` Hch ´ dimpG q “ 273 ´ 29nT .

AND

9 ´ nT “ K
2
B

(always verified, Noether’s formula)

´6KB ¨ ⌃i ptr F
2
i q “ ´Tradj F

2
i `

ÿ

⇢

n⇢ Tr⇢ F
2
i

3⌃i
2
ptr F 2

i q
2

“ ´Tradj F
4
i `

ÿ

⇢

n⇢ Tr⇢ F
4
i

⌃i ¨ ⌃jptr F
2
i qptr F 2

j q “

ÿ

⇢,�

n⇢� Tr⇢ F
2
i Tr� F

2
j

52



1 / 1



1 / 1

Text



16 / 27



17 / 27



20 / 27



21 / 27



22 / 27



23 / 27



24 / 27



25 / 27


