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Evidence:

- Prove R, a formula relating [1] and [2] (local to global principles) when:

dim(X) = 3, X, elliptic, Calabi-Yau with singularities (Q-factorial terminal)
Application

Birational extension of Kodaira's classification of singular fibers of relatively minimal
elliptic surfaces to higher dimensions.

- (Multiple) origins of algebras and representations
Applications
(Strings «~~ ) Outlook in F-theory, SCFT, . . .



Based on work with collaborators:

L. Anderson, P. Arras, M. Cveti¢, J. Gray, J. Halverson, C. Long, D. Morrison, P.
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(Some) Ingredients:



(Some) Ingredients:

» invariants of singularities:
discrepancies (terminal ---), Minor-Tyurina's numbers, - - -

» Div/Pic, AND Q-factoriality

» Homology , cohomology, topological Euler characteristic, computed via
Mayer-Vietoris

» Poincaré duality

» deformations



(Some) Ingredients:

» invariants of singularities:
discrepancies (terminal ---), Minor-Tyurina's numbers, - - -

» Div/Pic, AND Q-factoriality

» Homology , cohomology, topological Euler characteristic, computed via
Mayer-Vietoris

» Poincaré duality

» deformations

» Local,



(Some) Ingredients:

» invariants of singularities:
discrepancies (terminal ---), Minor-Tyurina's numbers, - - -

» Div/Pic, AND Q-factoriality

» Homology , cohomology, topological Euler characteristic, computed via
Mayer-Vietoris

» Poincaré duality

» deformations

» Local, Global and



(Some) Ingredients:

» invariants of singularities:
discrepancies (terminal ---), Minor-Tyurina's numbers, - - -

» Div/Pic, AND Q-factoriality

» Homology , cohomology, topological Euler characteristic, computed via
Mayer-Vietoris

» Poincaré duality

» deformations

» Local, Global and Local to Global Principles,




(Some) Ingredients:

» invariants of singularities:
discrepancies (terminal - --), Minor-Tyurina's numbers, - -

» Div/Pic, AND Q-factoriality

» Homology , cohomology, topological Euler characteristic, computed via
Mayer-Vietoris

» Poincaré duality

» deformations

» Local, Global and Local to Global Principles, Global to Local Principles




» Genus one (elliptic) fibrations.



» Genus one (elliptic) fibrations.

» Singularities. Which singularities?



» Genus one (elliptic) fibrations.

» Singularities. Which singularities? Claim: Q-factorial; terminal, klt.



» Genus one (elliptic) fibrations.
» Singularities. Which singularities? Claim: Q-factorial; terminal, klt.

» Algebras, representations and geometry.



v

Genus one (elliptic) fibrations.
Singularities. Which singularities? Claim: Q-factorial; terminal, klt.
Algebras, representations and geometry.

Local, global invariants, local to global principles , R and applications



» Genus one (elliptic) fibrations.

v

Singularities. Which singularities? Claim: Q-factorial; terminal, klt.
» Algebras, representations and geometry.

» Local, global invariants, local to global principles , R and applications

Lesson learned from Strings and Math.
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m:Y — B is a genus one (elliptic fibration with section o) <

Y <~—F,~T? Y <—FE,~ T2
lw lw U(lw lw E, (with a marked point).
B<—U>p B<——U>p

U open dense,

Y = B\ U: ramification locus. (Assume: ¥ # (¥.)
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Why study genus one fibrations

» Birational geometry: X, such that dim(X) = n and x(X) = n— 1 is birationally
equivalent to a genus one fibration (litaka's fibration)

» Birational geometry:
Test case: geometry in dim = n and log dim = n — 1 (“Fujino-Mori")

» Arithmetic: when there is a section (elliptic) fibrations
» Study of Calabi-Yau X: d... with genus one fibrations
» F-theory “compactifications” (X <> 7-branes of //-B on B.)

12
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Weierstrass equation:
(Local form) W : y? = x3 + f(s;)x + g(s;), sj € (B).

W might be singular.

Theorem (Nakayama)

Elliptic fibrations X " Weierstrass models W.
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Example: dim(W) =2: W :y? =x3+ f(u)x + g(u), uveC;
Y :4f3 —27g° =0.

f(u) and g(u) determine:

the type of singularity of W AND the fiber over ¥ in the minimal resolution X — W.

(a2
Kodaira's classification of singular fibers of minimal elliptic surfaces :

extended Dynkin diagrams when there is a section:

14



R. Waanda, - éb(/c'}oh‘c Sufoey

‘
I.4: The List of possible singular fibers. b<(k§ﬁ)}.(u¢)

Before beginning to address the issues mentioned above, I would 1like to
give a series of examples to illustrate some of the features of the theory to
the reader. It will be wuseful for the purposes of illustration and
communication for the reader to know the possible singular fibers which can

occur, and Kodaira’s names for them. This I present below, without proof,

simply so that I can speak of them intelligently in the examples to follow.

(I.4.1)Iable of possible singular fibers of a smooth minimal elliptic

surface. The names are those used by Kodaira.

Name Fiber

IO smooth elliptic curve

Il nodal rational curve

12 two smooth rational curves meeting transversally at two points

13 three smooth rational curves meeting in a cycle; a triangle

IN,N23 N smooth rational curves meeting in a cycle, i.e., meeting with
dual graph AN

I;,Nzo N+5 smooth rational curves meeting with dual graph 6N+4

IT a cuspidal rational curve

I1I two smooth rational curves meeting at one point to order 2

v three smooth rational curves all meeting at one point

IV** 7 smooth rational curves meeting with dual graph EG

Ili 8 smooth rational curves meeting with dual graph E7

IT 9 smooth rational curves meeting with dual graph ES

MIN,NZO topologically an IN’ but each curve has multiplicity N

All components of reducible fibers have self-intersection -2; the

irreducible fibers have self-intersection 0, of course,

The dual graphs referred to above are those of the extended Dynkin
diagrams. For ease of reference I’'ll give below tables of the Dynkin diagrams

and the extended Dynkin diagrams.
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Local, global invariants, local to global principles, R and applications

16



Theorem (Grassi - D. Wen (to appear, 2018))

Let 7 : X — B be any genus one fibration. There is a (bir.) commutative diagram:

17



Theorem (Grassi - D. Wen (to appear, 2018))
Let 7 : X — B be any genus one fibration. There is a (bir.) commutative diagram:
X-->X Kx = 7 (Kg + A),
L;T l,r X (lir X ) with at most: Q-factorial, terminal singularities
(B, A), with at most: Q-factorial, kit singularities.

17



Theorem (Grassi - D. Wen (to appear, 2018))

Let 7 : X — B be any genus one fibration. There is a (bir.) commutative diagram:

X-->X Kx = m(Kg + A),

l;, l,r X (% X) with at most: Q-factorial, terminal singularities
B__.B (B, A), with at most: Q-factorial, kit singularities.
IF:

A. Technical hypotheses from Mori MP hold, /<;()~< ) = 0 and no multiple fibers.

17



Theorem (Grassi - D. Wen (to appear, 2018))

Let 7 : X — B be any genus one fibration. There is a (bir.) commutative diagram:

X-->X Kx = m(Kg + A),

l;, l,r X (% X) with at most: Q-factorial, terminal singularities
B__.B (B, A), with at most: Q-factorial, kit singularities.
IF:

A. Technical hypotheses from Mori MP hold, x(X) = 0 and no multiple fibers.

B. dim(X) < 4 and Tt does not have without multiple fibers.

17



Theorem (Grassi - D. Wen (to appear, 2018))

Let 7 : X — B be any genus one fibration. There is a (bir.) commutative diagram:

X-->X Kx = m(Kg + A),

l;, l,r X (% X) with at most: Q-factorial, terminal singularities
B__.B (B, A), with at most: Q-factorial, kit singularities.
IF:

A. Technical hypotheses from Mori MP hold, x(X) = 0 and no multiple fibers.
B. dim(X) < 4 and % does not have without multiple fibers.

C. dim(X) < 3.

17
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Applications

bir.
1. Elliptic fibrations X, with Q-fact., terminal, sings. é Weierstrass models W .
2. If X is Calabi-Yau: X = (B, X).

18
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Definition
X is Q-factorial if any Weil divisor is Q-Cartier.

Example
1. Q-factorial: X, toric: every cone in the fan is simplicial.
2. X c P* of equation xpgo + x181 = 0 is NOT Q-factorial

Definition
X has terminal (canonical, kit) singularities «<—: Y — X resolution,
Ky = f*(Kx) 4+ > bk Ex with b > 0 (bx = 0, by > —1) and Ej exceptional divisors

Example
X, with Q-factorial terminal singularities, Kx ~ Ox, then: for any resolution Y/,
Ky # Oy.

~» “non-Calabi-Yau resolvable singularities” 1
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Singularities play a central role in string theory
v~ Gauge symmetries
v~ \Wrapping branes or strings on shrinking cycles

v~ Transitions through singularities
Typical analysis: move to a space without singularities, via resolution or deformation.

It is important to work directly with suitable singularities

It is important, possible and interesting to work directly with singularities
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It is important to to work directly with suitable singularities:

X, Calabi-Yau, dim(X) > 4 is NOT generically smooth.

X, Calabi-Yau, dim(X) = 3, X is generally smooth, but not always.

Examples in F-theory literature, where Q-factorial terminal singularities occur.

Example

Transverse intersections of nodal divisors on 3-folds (Q-factorial conifold).

It governs general behavior of the Jacobian of genus-one fibrations.

21
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Algebras, representations and geometry.

Local, global invariants, local to global principles, R and applications
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For W:

Kodaira fiber Iy I 11 v Ix v 1+ I

n

algebra: A-D-E | su(n) {e} su(2) su(3) so(2n+8) e e eg

Question posed by Arnold, 1976:
to find a common origin of all the A-D-E classification theorems, and to substitute a a

priori proofs to a posteriori verifications of a parallelism of the classifications

Conjectures-Theorem (slice): Brieskorn-Grothendieck, 1970

24
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Stratified discriminant locus X

X X

B Dy >yl B<——oyY\¥! «—— 52
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etc.
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Math: “A Brieskorn-Grothendieck program”, local, global, local to global
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» Y2 <~ algebras and some of their representations
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Math: “A Brieskorn-Grothendieck program”, local, global, local to global

X — B, X Q-factorial, klt, B smooth in codimension 2.

» Semi-simple Lie algebras g and some of their representations

«~ geometry of genus one fibrations and degenerations of fibers,
» Y1 o algebras g
» Y2 <~ algebras and some of their representations

Q-factorial terminal Gorenstein singularities

«~ Tjurina's numbers, dimensions of versal complex deformations of the singularities

Implement it:
1. Verify consistency with physics expectations
2. Prove results in mathematics.

26
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Analysis in the String Literature, dim(X) = 3 (from ~ mid 90s)

Physics constructions use X smooth;

Assignments

verify consistencies for X Calabi-Yau (anomalies cancellations formulae)

27
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Intersections — “Cartan” of g (roots).
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Assignments, from mid '90s:

Y1 «~ algebras g

1. (Witten method)
Intersections — “Cartan” of g (roots).

2. (Following Tate, [Grassi-Morrison 2011])
Assume elliptic fibration and generalize Tate's algorithm.

3. (Following String Junctions, [Grassi-Halverson-Shaneson,
G-H-S, Long-Tian, 2018, for most non simply-laced])
Deform to nodal fibers.

28
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Assignments, in the presence of singularities: Grassi-Weigand; Shaneson

Y1 «~ algebras g

1. (Refined Witten method)

Assume Poincare duality over Q, Z valued over relevant Weil divisors.
Intersections — “Cartan” of g.
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» Genus one (elliptic) fibrations.
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Genus one (elliptic) fibrations.
Singularities. Q-factorial; terminal, klt.
Algebras, representations and geometry.

Local, global invariants, local to global principles, R and applications
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Correspondence, Calabi-Yau with Q-factorial terminal singularities

Y, stratified «<—— Algebras, representations and multiplicity

¥! — Algebras, representations: adj(g — 1)
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Correspondence, Calabi-Yau with Q-factorial terminal singularities

Y, stratified «<—— Algebras, representations and multiplicity

¥! — Algebras, representations: adj(g — 1)

Y2 — algebras, representations: po(g’ — g), po “charged matter”
Y2 — Tyurina’s number of P.

34



Number Type g o Pqt P (dimadj)cp | (dim po), | dim (/}Q]{ )Ch dim (pQQ») \
1 h {e} = = 0 0 0 0
2 I su(2) = fund 2 0 0 2
3 A su(3) - fund 6 0 0 3
4 by, k=2 sp(k) A3 - fund 2k? k2 — 2k 0 2k
5 bii1 k=1 sp(k) A2 +2 x fund | }fund fund 2k? 2k? + 2k k 2k
6 I, n=4 su(n) A2 fund n” —n 0 %(n2 —n) n
7 Il {e} = 0 0 0
8 1 su(2) 2 x fund 2 0 4
9 % sp(1) A% +2 x fund | 1fund 2 4 1
10 % su(3) 3 x fund 6 0 9
1 I g2 7 = 12 6 0
12 Iy spin(7) vect = spin 18 6 0 8
13 Iy spin(8) vect spin 24 0 8 8
14 I spin(9) vect - spin 32 8 0 16
15 I spin(10) vect spin. 40 0 10 16
16 I3 spin(11) vect - %spin 50 10 0 16
17 I3 spin(12) vect %spin: 60 0 12 16
18 I¥,n=3 |so(2n+7) vect - NM 2(n+3)? 2n+6 0 NM
19 Iy, n=3 |so(2n+8) vect NM 2(n+3)(n+4) 0 2n+8 NM
20 % fa 26 = 48 24 0
21 % [ 27 72 0 27
22 - o 156 126 0 28
23 1 eg NM 240 0 NM

BB



Number Type g o Pqt P (dimadj)cp | (dim po), | dim (/}Q]{ )Ch dim (pQQ») \
1 h {e} = = 0 0 0 0
2 I su(2) = fund 2 0 0 2
3 A su(3) - fund 6 0 0 3
4 by, k=2 sp(k) A3 - fund 2k? k2 — 2k 0 2k
5 bii1 k=1 sp(k) A2 +2 x fund | }fund fund 2k? 2k? + 2k k 2k
6 I, n=4 su(n) A2 fund n” —n 0 %(n2 —n) n
7 Il {e} = 0 0 0
8 1 su(2) 2 x fund 2 0 4
9 % sp(1) A% +2 x fund | 1fund 2 4 1
10 % su(3) 3 x fund 6 0 9
1 I g2 7 = 12 6 0
12 Iy spin(7) vect = spin 18 6 0 8
13 Iy spin(8) vect spin 24 0 8 8
14 I spin(9) vect - spin 32 8 0 16
15 I spin(10) vect spin. 40 0 10 16
16 I3 spin(11) vect - %spin 50 10 0 16
17 I3 spin(12) vect %spin: 60 0 12 16
18 I¥,n=3 |so(2n+7) vect - NM 2(n+3)? 2n+6 0 NM
19 Iy, n=3 |so(2n+8) vect NM 2(n+3)(n+4) 0 2n+8 NM
20 % fa 26 = 48 24 0
21 % [ 27 72 0 27
22 - o 156 126 0 28
23 1 eg NM 240 0 NM

In 1, 5, 7 : Q-factorial terminal singularities at P;

topologically the fiber through P is the same as the general fiber over ¥;.

In 7 the singularity induces a non-trivial representation associated to Qf.
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Definition (The charged dimension of p)
h Cartan of g. (dimp)cy = dim(p) — dim(kerply).

Example: (dimadj)c, = dimg —dimb =dimg — rkh = .
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(U,0) = C"*1, isolated hypersurface singularity P = 0, defined by f = 0.

Definition (The Milnor number of P)
of of

m(P) = dim(c((C{Xl, 500 ,X,,+1}/< ——hoocog T
0x1 OXn41

Definition (The Tyurina number 7(P))

T(P) = dimc(C{xy, ..., xns1}/ < f,ﬁ of

ox1 " Oxoet

versal deformations of the hypersurface singularity at P in U
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Definition (The charged dimension of p)
h Cartan of g. (dimp)cy = dim(p) — dim(kerply).

Example: (dimadj)c, = dimg —dimb =dimg — rkh = .

(U,0) = C"*1, isolated hypersurface singularity P = 0, defined by f = 0.

Definition (The Milnor number of P)
of of

m(P) = dimc(C{xy, ..., xp41}/< B

Definition (The Tyurina number 7(P))

T(P) = dimc(C{xy, ..., xns1}/ < f,ﬁ of

ox1 " Oxoet

versal deformations of the hypersurface singularity at P in U

Saito: 7(P) = m(P) <> P is a weighted hypersurface singularity.

38



Theorem

30K3 + 3 (Xtop(X) + X p m(P)), P singular of X with Milnor number m(P),
is independent of the choice of the particular minimal model X.

Theorem (Local to Global (simplified version))

30K3 + 3 (xtop(X) + Xp m(P)) =
= (g — 1)(dimadj)ch + (&' — g)(dim po)cn + ZQ(dim PQ)ch + ZP 7(P)

Birational extension of Kodaira's classification of singular fibers of relatively minimal
elliptic surfaces to higher dimensions (codimension one and two strata):
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Theorem

30K3 + 3 (Xtop(X) + X p m(P)), P singular of X with Milnor number m(P),
is independent of the choice of the particular minimal model X.

Theorem (Local to Global (simplified version))

30K3 + 5 (xtop(X) + Xp m(P)) =
= (g — 1)(dimadj)ch + (&' — g)(dim po)ch + Do (dim pQ)eh + Xp T(P)

Birational extension of Kodaira's classification of singular fibers of relatively minimal
elliptic surfaces to higher dimensions (codimension one and two strata):

Theorem

The dimensions of the representations are birational invariants of the minimal
model of the elliptic fibrations.

39



In fact,
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In fact,

X smooth Calabi-Yau threefold: Xtop(X) = 2{KaDef(X) — CxDef(X)}.

KaDef(X), CxDef(X) are birational invariants of the minimal model.
[1 Hodge duality, and Poincaré duality.]

Theorem

X Calabi-Yau threefold with Q-factorial terminal singularities:
Xtop(X) = 2{KaDef(X) — CxDef(X)} + >.p m(P).

Need: Poincaré dualtiy (with singularities).

Also m(P) is a birational invariant of the minimal model

40



Conjecture

(1) It always holds.
(2) It holds for Multiple fibers as well.
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Conjecture

(1) It always holds.
(2) It holds for Multiple fibers as well.

(2) For Calabi-Yau < discrete gauged symmetry (Anderson-Grassi-Gray-Ohelmann)

41



Cancellations of anomalies unveiled and extended to the singular cases.

42



Analysis in the String Literature for dim X = 3 (from ~ mid 90s) and X smooth)

The anomaly cancellation requirements lead to:

1. (Global:) 0 = (ny — ny + 273 — 29n7) and 0 = (=17)
nt: tensor multiplets, ny vector multiplets, ny hypermultiplets.

2. (Local:) Conditions on Tr,q; in adjoint representation, Tr, in suitable
representations ps, with multiplicities, and local geometries around X! and ¥2.

Dictionary:

ny = dim(G),
nt = h%(B) —1 > KaDef(X)
ny = Hep + CxDef(X) + 1,

43



Analysis in the String Literature, dim(X) = 3 (from ~ mid 90s)

|X — B, X, Calabi-Yau, smooth, B smooth.|

The anomaly cancellation requirements lead to:

h*1(X) + 1 + Hgp, — dim(G) = 273 — 29n7.
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Analysis in the String Literature, dim(X) = 3 (from ~ mid 90s)

|X — B, X, Calabi-Yau, smooth, B smooth.|

The anomaly cancellation requirements lead to:

h*1(X) + 1 + Hgp, — dim(G) = 273 — 29n7.

AND

9—n7r = K2 (always verified, Noether's formula)

(Local) Conditions on Tr,q; in adjoint representation, Tr, in a suitable representation p,

and local geometries around X! and ¥2.

a4



< propose and extend cancellations of anomalies in the presence of singularities.
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< propose and extend cancellations of anomalies in the presence of singularities.

We also verify it in other, different, examples.
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» Genus one (elliptic) fibrations.
» Singularities, Q-factorial; terminal, klt.
» Algebras, representations and geometry

» Local, global invariants, local to global principles , R and applications

Opportunities with Singularities.

Towards: higher dimensions.

46
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Anomalies (X — B; G)
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Anomalies (X — B; G)

v~ Y, principal G-bundle G (the “gauge bundle™).

v~ F curvature of the gauge connection

v~ R curvature of the Levi—Civita connection.

Consistent quantum theory:

the “anomalies” of this theory MUST VANISH.

48



Schwarz: (N=1 theories in six dimensions with a semisimple group G)
The anomaly polynomial:
k- A-trR* + B - (tr R?)? trR2ZX ZX(4)+4ZYU
i<j

must vanish.
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Schwarz: (N=1 theories in six dimensions with a semisimple group G)

The anomaly polynomial:

k-A-trR* + B . (trl-'\’2 trR2ZX ZX(4)+4ZY’J
i<j
must vanish.
k constant,
p P

n, is a suitable multiplicity in the matter representation, and n; ; multiplicity of

representation (p, o) of G; x G;.

49



. . 4 1
K- A-trR +B-(trR2)2+6trR22Xi(2)—

2

32Xi(4) +4).Y;

i<j

50



k- A-trR* + B - (tr R?)? trR22X 2x<4)+42

i<j

1. A= (ny —ny +273—29n7) and B = (97%)

nt: tensor multiplets, ny vector multiplets, ny hypermultiplets.

2. Dictionary:

ny =dim(G),
nr = h"1(B) -1
ny = Hep + h21(X) + 1,

3. Traqj in adjoint representation, Tr, in a suitable representation p,

50



The anomaly vanishes if:

nyg — ny + 273 —29n1 = 0.

AND

3

i<j

m)‘(trR2)2+étrR22X’.(2)7§ZXI(4)+4ZYU _a

(2)
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The anomaly vanishes if:

ng —ny + 273 — 29n1 = 0. (1)

AND

(

8

m)‘(trR2)2+étrR22X’.(2)7§ZXI(4)+42Yij _a

i<j

(2)

Green-Schwarz says (?77?) vanishes if it can be written as:

<DtrR2 +ZDitrF,-2) : (EtrR2 +ZE;trF,-2> )
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The anomaly vanishes if:

ng —ny + 273 — 29n1 = 0. (1)

AND

(

Q_J)‘(trR2)2+%trR22X’.(2)7§ZXI(4)+42Yij _a

8

i<j

(2)

Green-Schwarz says (?7?) vanishes if it can be written as:

<DtrR2 +ZDitrF,-2) : (EtrR2 +ZE;trF,-2> )

Sadov say (?7) can be taken as:

1 1 2 2 1 2 2
2<2KB tr R —|—2ZZ;trFi>-<2KB trR>+2) E;jtr 7).

51



The anomaly cancellation requirements lead to:

h*1(X) + 1+ Hg, — dim(G) = 273 — 29n7.
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The anomaly cancellation requirements lead to:

h*1(X) + 1 + Hg, — dim(G) = 273 — 29n7.

AND

9— nr = K3 (always verified, Noether's formula)

—6Kp - X;(tr F,-2) = — Tragj F,-2 + Z n, Tr, F,-2
)

3% 2(tr FA)? = — Tragy Fi' + Z n, Tr, it

P

2 2
> npe Trp FZ Tro Fj
Xes

Z; . Zj(tr F,-2)(tr sz)

52
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