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Introduction

In recent years it has become clear that, in some
backgrounds, topological string theory is closely related to
quantum-mechanical models and quantum integrable systems.

This relation has led to interesting developments, e.g. non-
perturbative definitions of some topological string theories.

The quantum systems involved in this correspondence are
not always elementary. In this talk, | will discuss
applications of topological string theory to basic models in
Quantum Mechanics. This turns out to shed new light on
old problems.



Back to basics: anharmonic oscillators

Arguably, the simplest models in QM are described by
Hamiltonians of the form

2 degree N
[X, p] = ih H = p~ + VN (X) ) pol)g'nomial

However, if the degree of the polynomial N is > 3,
there is no explicit solution

\

cubic potential: the basic
example in Heisenberg’s
seminal paper of 1925

quartic potential:
symmetric double-well



Almost an exact solution: the exact WKB method, i.e.
all-orders WKB + Borel-Ecalle resummation

[Voros, Silverstone, Zinn-Justin, Delabaere, Pham, Alvarez...]

All-orders WKB gives a “quantum” Liouville one-form,
which is a formal power series in /?
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Basic building blocks of the exact WKB method:
quantum periods and Voros symbols

V., = exp (% 7{ P(z, h)dx) Y creyce
Y T WKB

quantum period

Quantum periods define a deformed special geometry
[Nekrasov-Shatashvili, Mironov-Morozov, ACDKV]

0 7{4 Pz h)da

OFNns .
= P
7 i 7{3 (, h)dx

quantum free energy




The spectrum of H is determined by an “exact”
quantization condition (EQQC). Typically it is a vanishing
condition involving Voros symbols

]_—l—eia/h—'_SQ_aGFNS/h:O

determines tower of resonances
in the cubic oscillator

Perturbatively, we have

1 + eia/ﬁ ~ () > 7{ p(x)dx ~ 2Th (n + %)
A

Bohr-Sommerfeld



The EQC is only well-defined once a resummation
prescription has been chosen for the formal power series.
The coefficients of resummed Voros symbols depend on this
prescription (“‘resurgent” version of Stokes phenomenon)

1_|_eia/h_|_se—6aFNs/h:O

S=0,1



Obvious questions:

perturbative: how does one calculate Voros symbols?
What is their structure?

non-perturbative: can we find EQCs involving actual
functions, and not (resummed) formal power series!?

As we will now see, topological string theory has something
interesting to say about both questions



Voros symbols

and the holomorphic anomaly

In topological string theory, we are often interested in the

perturbative series of the free energies,

F,(t) . One of the

most powerful methods to obtain them is the BCOV

holomorphic anomaly equatio

-Recursive, with initial data Fy(t), Fi(t)

-Needs boundary conditions (holomorphic

n (HAE)

ambiguity), but

these can be determined for local CY [Huang-Klemm]

-Very efficient if combined with modularity

-They can be extended to the refined topo
[Huang-Klemm,Krefl-Walcher]

'Huang -Klemm]

ogical string



Claim [Codesido-M.M]:

Voros symbols for anharmonic oscillators are governed by the

holomorphic anomaly equation
(in the NS limit of the refined version)

Corollary:Voros symbols are formal power series of
modular forms on the WKB curve

2k
in genus one: FNS E Fk 7- 7- h

k>0 ™~ computed
recursively

evidence in genus two: [Fischbach-Klemm-Nega]

The HAE can be also used to calculate exponentially small
corrections to this series [Couso et al, Codesido-M.M.-Schiappa]



From SWV theory to QM

Why is there such a connection? It turns out that
anharmonic oscillators emerge as a scaling limit of SU(N)
Seiberg-Witten (SW) theory near the Argyres-Douglas (AD)
POINT [Grassi-Gu, Grassi-M.M,, lto-Shu]
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In the quantum version: hAsw = aliqum



topological

strings
geomN
engineering
[Klemm-Lerche-Mayr- SW
Warner-Vafa,
Katz-Klemm-Vafa] theo ry

Argyres-Douglas

scaling anharmonic
oscillators

The holomorphic anomaly equations governing topological
strings are inherited in each limiting procedure



Quantum SWV curve: a deformation of QM

The “engineering” of anharmonic oscillators as a limit of SW
theory suggests to look more carefully at the quantum SW
curve

x, p| = ih (AN (eP+e7P) + Wn(x)) 1)) =0

Equivalently, Hy|vy) = —hyn|Y)

N-1
Hy = AY (ep —I—e_p) +xV + Z xR R
k=2

We are interested in the actual spectral
problem on [*(RR)



N odd: resonant states

\/\\ complex eigenvalues —hén) (ha) n=01,2,.

N even: bound states

Hy = A% (e + e P) + x* + hox® + hax

W real eigenvalues —hin)(hg,hg) n=01,2-

Quantization leads to a discrete family of codimension one
submanifolds in SW moduli space




Relation to the Toda lattice

A very similar Hamiltonian appears in the Baxter equation of
the Toda lattice [Gaudin-Pasquier]. In this case, the boundary
conditions one imposes are much more restrictive: solutions
only exist for a discrete set of points in moduli space, which give
the eigenvalues of the commuting Hamiltonians of the quantum
Toda lattice.

One can show that these points belong to the submanifolds
defined by our quantization problem.

h3 Toda lattice

\- // points
AN pd




Exact quantization conditions

It turns out that this deformed version of QM is exactly
solvable [Grassi-M.M.]: one can write down exact quantization
conditions for any potential in terms of actual functions (no
resummation needed).

In this problem, the Voros symbols involve the quantum
periods of the SWV curve:
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Remarkably, instanton calculus provides a resummation of
these formal series in terms of convergent expansions:

E , 2dN
FNS CLZ, fd CLZ, A
d>0

hi(ais ) = hga(as; ) AP
d>0

Alternatively, one can write TBA-like equations determining
these functions [Nekrasov-Shatashvili, Kozlowski-Teschner].

The EQC will involve these resummed quantum periods. It
is given by the vanishing of a single function in SV moduli
space (codimension one!).What is this function?
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Y= (=)' W - Weyl orbit
i=0 T
fundamental
weights of SU(N)




These EQCs can be effectively used to calculate energy
levels, in complete agreement with numerical calculations of
the spectrum

H, = A* (e'o—l—e_p)—kxll—l()x2 J \ ““““ B / x

-4 -2 L 2 4
_1 0 -

Instantons o Iy
1 —17.67846191066723095  —17.67300109302647040
2 —~17.67844236054395243  —17.6779815408557049:3
3 —~17.67844237073924490  —17.67798155104316065
4 —~17.678442370757H8180  —17.67798155106G149680
TBA —17.67844237075748709 —17.677983155106140212

numerical = 17.67844237075T48700  —17.67798155106140212

A=h=1



Derivation from the TS/ST correspondence

These EQCs are a consequence of the TS/ST correspondence,
which relates (conjecturally) the spectral properties of

quantum mirror curves to the BPS invariants of the toric CY
[Grassi-Hatsuda-M.M., Codesido-Grassi-M.M.]
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from perturbative from non-
WKB for the quantum perturbative terms/
mirror curve GV invariants

In contrast, the quantization conditions determining the
Toda lattice points [Nekrasov-Shatashvili] only require
perturbative information:
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basic roots
of SU(N)




Why Quantum Mechanics is hard

Argyres-Douglas
scaling | anharmonic
oscillators

‘ SWV theory I

The instanton sum expressing the quantum periods
converges very badly near the AD points. So it is not
straightforward to deduce EQCs for QM from our exact
result for the quantum SWV curve.

We anticipate however that existing EQCs for some QM
problems, in terms of integral equations [Dorey-Tateo, Gaiotto],

can be deduced from the TBA form of our EQC:s.



Instanton calculus/topological vertex resummations have
been crucial in obtaining exact solutions to spectral
problems: they transform asymptotic series into
convergent series (in some cases). However, they are
tailored for the semiclassical/large radius regions in
moduli spaces.

Are there similar resummations in other regions of moduli
space!



Hierarchy of quantum problems

quantum
MmIirror curves

A 4

quantum
SWV curves

v

anharmonic
oscillators

eP, e easy

oP moderately
’ easy

P, X hard



Conclusions

The 100-year old problem of solving quantum anharmonic
oscillators can be addressed in the context of topological
string theory. For example,Voros symbols can be calculated
with the holomorphic anomaly equation.

The intermediate stage between topological strings and
ordinary quantum mechanics is the quantum SWV curve, which
provides a solvable deformation thereof (and a new testing
ground for the TS/ST correspondence). Many generalizations
are possible (matter content, gauge groups, ...).

Solving QM oscillators amounts in this context to an exact
determination of the quantum periods of SW theory near
AD points.



Thank you for your attention!



