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I The subject of my talk will be Chern-Simons-like TQFTs in three dimensions
that appear by reduction of the 6d (2, 0) theory on a lens space, or
equivalently, that appear on the topological side of the 3d-3d correspondence.

I A lot is already known about them. There are explicit derivations by
reduction from six dimensions, and there are state-integral models that
compute partition functions of these theories on large classes of
three-manifolds.

I However, a number of properties of these theories seem puzzling. In this talk,
I will argue that some of these puzzles can be explained by S-duality and
properties of the Kapustin-Witten PDEs.



Review: The 3d-3d Correspondence

I We start with a (2, 0) superconformal theory in six dimensions. These
theories are labeled by ADE Dynkin diagrams, and for simplicity I will
restrict to the case of A1. This theory describes the low energy physics on
two coincident M5-branes.

I The theory is put on a product six-manifold M3 × L with a particular
supergravity background that preserves at least two supercharges. Here M3 is
an arbitrary (smooth and oriented) three-manifold, and L is a three-manifold
that must admit some extra geometric structure for the background to exist.

I I will restrict to the case when L is a degree k circle bundle over S2. It will be
denoted Lk, or sometimes Lbk, to specify also a complex parameter b of the
supergravity background.

I The two factors M3 and Lbk in the product are not on equal footing. Along
M3, the theory is topologically twisted, and supersymmetric observables are
expected to be independent of the metric on M3. Their dependence on the
geometry of Lbk is via the parameter b.



Review: The 3d-3d Correspondence

I Reducing the 6d theory on M3, we expect to get a 3d N = 2 superconformal
theory T[M3]. It is a topological invariant of M3, valued in quantum field
theories. To explicitly identify this theory is not an easy matter.

I For M3 with an ideal triangulation, an algorithm for building a candidate
theory TDGG[M3] was proposed by [T. Dimofte, D. Gaiotto, S. Gukov,
arXiv:1108.4389]. It is known that in general, TDGG[M3] describes only a
subsector of the full T[M3]. (Whether the full T[M3] must exist as a
superconformal 3d theory for an arbitrary M3 is not entirely clear, see e.g.
[D. Gang, K. Yonekura, arXiv:1803.04009].) Other proposals for T[M3] for
different classes of M3 exist in the literature.



Review: The 3d-3d Correspondence

I If we instead reduce the 6d theory on Lbk, the result is a TQFT on M3. For
the 6d theory of type A1, it is the SL(2,C) complex Chern-Simons theory,

ZCS =

∫
C

DADÃ exp

(
i

2
(k − iv)CS(A) +

i

2
(k + iv)CS(Ã)

)
,

where the integer level k is the degree of the circle bundle Lk, and the
complex level v also depends on the parameter b of the supergravity
background,

v = −ik
b2 − 1

b2 + 1
.

[C. Cordova, D.L. Jafferis, arXiv:1305.2891; T. Dimofte, arXiv:1409.0857.]

I Part of the statement of the 3d-3d correspondence is equality of the partition
functions of T[M3] on Lbk and complex Chern-Simons theory on M3,

ZT [M3][Lk,b] = ZCS[M3] .



Review: The 3d-3d Correspondence

I Let us further restrict to k = 1, that is, to Lbk being the squashed three-sphere
S3
b . The TQFT then is a complex Chern-Simons theory at integer level k = 1.

I Interestingly, before Cordova and Jafferis derived this Chern-Simons theory
from six dimensions by a supergravity computation, the correct TQFT was
thought to be SL(2,R) or “SL(2,R)-like” Chern-Simons theory.
[Y. Terashima, M. Yamazaki, arXiv:1103.5748.]

I Indeed, consider this TQFT on a product M3 ' R× C, for a two-manifold C.
The space of states that the TQFT associates to C is the space of BPS states
of the 6d theory on R× C × S3

b , or equivalently, the space of BPS states on
R× S3

b of the 4d N = 2 class S theory T[C]. The usual AGT correspondence
identifies this space with Liouville conformal blocks at central charge
c = 13 + 6(b2 + b−2). [N. Nekrasov, E. Witten, arXiv:1001.0888.]

I It has been known since long ago that Liouville conformal blocks arise as the
Hilbert space of SL(2,R)-like Chern-Simons theory [H. Verlinde, 1990.]

I One goal of my talk will be to explain what this SL(2,R)-like Chern-Simons
theory really is, and why it is related to SL(2,C) Chern-Simons with k = 1.



Review: State-Integral Models

I For M3 with non-empty boundary and an ideal triangulation, it is known how
to compute the partition function of complex Chern-Simons theory by a
state-integral model. [T. Dimofte, arXiv:1409.0857; J.E. Anderson,
R. Kashaev, arXiv:1409.1208; more references in the review: T. Dimofte,
arXiv:1608.02961.]

I To each tetrahedron in the decomposition of M3, one associates a factor of
quantum dilogarithm of a local holonomy variable. Gluing corresponds to
symplectic reduction in holonomy variables, which is implemented by
integration and setting some variables to zero.

I Since Hilbert spaces of complex Chern-Simons theory in general are not
finite-dimensional, the partition function for an arbitrary M3 need not be
finite. In fact, a good canonical integration cycle for the state-integral model
can be constructed when a triangulation of M3 admits a positive angle
structure.

I The state-integral model is well-defined for Re b > 0, or equivalently, for
b2 ∈ C \ R≤0.



Review: State-Integral Models

I For example, for k = 1 and M3 ' S3 \ 41, the partition function is

Z[S3 \ 41] =

∫
R+iε

dσ exp
[
−iπ(σ − i(b+ b−1)/2)2

]
ψ2
b (σ) ,

where ψb(σ) is the Faddeev’s quantum dilogarithm. (For simplicity, the
meridian holonomy parameter was turned off, making the holonomy
parabolic.)

I This partition function has interesting perturbative expansions in different
regimes:

• b2 →∞ : 3−1/4 exp
(
−b2

(
V
2π −

iπ
12

)) (
1 +O(b−2)

)
;

• b2 → 1+ε : 3−1/2e−3πi/4 exp
(
− V

2π −
iπ
12

)
+3−1/2eπi/4 exp

(
V
2π −

iπ
12

)
+O(ε);

• b2 → −1 + iε : 3−1/2e−iπ/4 exp
(
−(2iε−1 + 1) V2π + iπ

12

)
(1 +O(ε))

+3−1/2e−iπ/4 exp
(
(2iε−1 + 1) V2π + iπ

12

)
(1 +O(ε)).

Here V ≈ 2.03 is the hyperbolic volume of M3 and π
12
± iV

2π
are the

Chern-Simons invariants of the two irreducible PSL(2,C) flat connections.

I The asymptotics at b2 → −1 is the perturbative expansion of the
Cordova-Jafferis theory. The other two regimes also look as some
Chern-Simons perturbative expansions, and I will explain what theories they
correspond to.



Chern-Simons Theory from Six Dimensions

I Next I will present a quick derivation of these Chern-Simons theories from six
dimensions. This will help to elucidate some of their properties.

I Optimally, one would like to start with a 6d supergravity background and
reduce on Lbk to three dimensions. But I do not have an explicit description of
this background. (A 5d background obtained by reduction on an S1 fiber, for
a particular choice of the metric, can be found in [C. Cordova, D.L. Jafferis,
arXiv:1305.2891].)

I Instead, we will first take the size of M3 to be small, so that the 6d theory
can be viewed as a 3d N = 2 theory. Such theory can be put in a known way
on a squashed lens space background Lbk. This background has some nice
features, which we will assume to hold also when the size of M3 is not small.
With that assumption, it will be easy to see how complex Chern-Simons
theory emerges from six dimensions.



Chern-Simons Theory from Six Dimensions
I We view Lk as a two-torus T 2 with coordinates ϕ1 and ϕ2 fibered over an

interval I with coordinate y. Some one-cycles of T 2 shrink at the ends of the
interval. According to [C. Closset et al, arXiv:1212.3388], to put a 3d N = 2
theory on this manifold, we need to specify a metric and an integrable
transversely holomorphic foliation, compatible with the metric.

I For the metric we choose

ds2 = dy2 +
a(y)

Im τ(y)

(
(dϕ1 − Re τ(y) dϕ2)2 + (Im τ(y) dϕ2)2

)
,

where the area a(y) and the modular parameter τ(y) are arbitrary functions
of y, required only to satisfy a > 0 and Im τ > 0, as well as some conditions at
the ends of I, for the metric to be smooth.

I To specify a THF compatible with the metric, it is enough to pick a unit
vector field ξ. We take

ξ = i
t− t

1 + |t|2
e1 +

t+ t

1 + |t|2
e2 +

1− |t|2

1 + |t|2
e3 ,

where t(y) ∈ C ∪∞ is a y-dependent projective parameter, and

e1 =

√
Im τ

a
∂ϕ1 , e2 =

1
√
a Im τ

(Re τ∂ϕ1 + ∂ϕ2 ) , e3 = ∂y

is a basis of unit vector fields.



Chern-Simons Theory from Six Dimensions
I So, our background is determined by the parameters a(y), τ(y) and t(y). One

can show that the THF is integrable if there exists a constant Ψ such that

t2(y) = −
Ψ− τ(y)

Ψ− τ(y)
, (∗)

This Ψ ∈ C ∪∞ is a new, y-independent parameter. Explicitly, the local
holomorphic coordinate for our integrable THF is

z = −ϕ1 + Ψϕ2 +

∫
dy

√
Im τ

a

2i

t+ t−1

The formula (∗) fixes t(y) in terms of τ(y) and Ψ up to a sign. Note that
there are two branching points for t(y) located at τ = Ψ and τ = Ψ.

I The 3d N = 2 supergravity background determined by this THF preserves
two supercharges of opposite R-charge, which anticommute to a translation
by a complex Killing vector

{Q, Q̃} = Ψ∂ϕ1 + ∂ϕ2 .

I It is known that the partition function of a 3d N = 2 theory on a THF
background does not depend on all the details of the geometry. When the
parameters are varied, it only holomorphically depends on the Dolbeault
cohomology class of the THF deformation [C. Closset et al, arXiv:1309.5876].
One can show that in our setting, any changes in a(y), τ(y) and t(y) for
constant Ψ lead to trivial (Q-exact) deformations. The partition function
depends on the geometry only through a holomorphic dependence on Ψ.



Chern-Simons Theory from Six Dimensions

I Assuming that in the 6d lift of this supergravity background we can also
freely change a(y) and τ(y), we take the size of the torus fiber to be small.
Reducing the 6d (2, 0) theory on the torus fiber, we get a 4d N = 4 super
Yang-Mills theory on M3 × I with the Kapustin-Witten twist.

I The modular parameter τ(y) becomes the gauge coupling. Since it depends
on y, in general we have a Janus configuration. A (p, q) shrinking cycle at an
end of the interval gives rise to a (p, q) fivebrane boundary condition.
[D. Gaiotto, E. Witten, arXiv:0804.2902.]

I It is easy to show that the parameter t(y) of the THF background becomes
the Kapustin-Witten twisting parameter. The formula for t(y) that appeared
earlier can be rewritten as

Ψ = Re τ + i
t2 − 1

t2 + 1
Im τ ,

which means that Ψ becomes the canonical parameter of Kapustin and
Witten. [A. Kapustin, E. Witten, hep-th/0604151.]

I Note that both τ(y) and Ψ change by Möbius transformations under large
diffeomorphisms of T 2, or equivalently, the 4d S-duality action,

τ →
aτ + b

cτ + d
, Ψ→

aΨ + b

cΨ + d
.



Chern-Simons Theory from Six Dimensions

I Let us specialize to the case k = 1, that is, to the squashed three-sphere S3
b .

We can choose the coordinates on T 2 so that the cycle (0, 1) shrinks on the
left and (1, 0) shrinks on the right.

I With this choice of basis, one can show that Ψ ≡ b2, where b is the usual
parameter used for the squashed three-sphere background.

I The figure shows a possible profile of τ(y). The curve can be moved
arbitrarily in the upper half-plane, with one end at +i∞ and the other at 0,
but it cannot cross the points Ψ and Ψ, because these are the branching
points for the function t(y).

I We see that the background is well-defined for b2 ∈ C \ R≤0. This is precisely
where the Chern-Simons state-integral model is defined.



Chern-Simons Theory from Six Dimensions

I In fact, for the S3
b background, there are four useful ways to choose the basis

of one-cycles on T 2. In the 4d N = 4 super Yang-Mills, these choices are
related by S-duality transformations. (Expressions above the lines in the
figure above are values of Ψ.) In all these duality frames, the TQFT is some
kind of Chern-Simons theory, as easily follows from Witten’s construction of
analytically-continued Chern-Simons via N = 4 super Yang-Mills [E. Witten,
arXiv:1101.3216].

I More specifically, duality frames I and II lead to SL(2,R)-like Chern-Simons
theories, which should be more appropriately called Teichmüller TQFT.

I Duality frames III and IV give complex SL(2,C) Chern-Simons theories. The
latter is the theory found by Cordova and Jafferis.

I Next let us look at all these theories in more detail, starting with Teichmüller
TQFT.



Teichmüller TQFT

I In this duality frame, we have the Langlands-twisted N = 4 super Yang-Mills
theory on M3 × I with the D5 and the NS5-type boundary conditions at the
two ends y = 0 and y = 1. (We parameterize I by y ∈ [0, 1].)

I We will explain, how this configuration leads to an SL(2,R)-like
Chern-Simons theory. For this part of the talk, we restrict to b2 ∈ R+. This is
the regime where the theory is unitary and can be understood most explicitly.

I The fields in 4d are the usual field content of the Kapustin-Witten twisted
theory:
• a connection A on a principal SO(3) bundle E;

• a one-form φ valued in ad(E). It originates from four out of six scalars of the
super Yang-Mills theory upon twisting;

• two ad(E)-valued scalar fields σ and σ, as well as some fermions. For the
most part, these fields will be unimportant.



Teichmüller TQFT
I The bulk part of the action is (almost) Q-exact and serves to impose

localization on the solutions to the Kapustin-Witten equations on M3 × I,

F − φ ∧ φ− ?4dAφ = 0 , dA ?4 φ = 0 ,

where dA = d + [A, ·] is the gauge-covariant de Rham differential. (In general,
the equations depend on the twisting parameter t. Since it only appears in
Q-exact terms, we can set it to a convenient value, which we have chosen to
be t = −1.)

I Let us choose the gauge Ay = 0. Also, the component φy of the adjoint
one-form vanishes at both ends of the interval as a consequence of the
boundary conditions. Then a simple integration by parts argument shows
that it vanishes everywhere. The KW equations reduce to flow equations in y
for a connection and an adjoint-valued one-form on M3

∂yA = − ?3 (dAφ) , ∂yφ = − ?3 (F − φ ∧ φ) , (∗)
dA ?3 φ = 0 (∗∗) .

These are sometimes called the reduced KW equations.

I Let ΩA(M3) be the space of complex PSL(2,C) gauge fields on M3.
Equations (∗) are the downward gradient flow for the functional

h = Re (iCS(A))

on ΩA(M3), while the last equation (∗∗) is the zero moment map condition
for the action of the complexified gauge group on ΩA(M3).



I To be more precise, the bulk part of the action is not quite Q-exact, but also
contains a Q-closed topological term ∼ iΨ

∫
tr(F ∧ F ), but we will treat it as

a boundary interaction. This topological term combines with the boundary
terms at the NS5-type boundary at y = 1 into

INS5 =
iΨ

4π

∫
y=1

tr

(
AdA+

2

3
A3

)
.

Here A = A+ iφ is a complexified gauge field on M3 × {y = 1}, made out of
restrictions of the bulk fields A and φ to the boundary y = 1.



Teichmüller TQFT

I The D5 boundary condition at y = 0 is the Nahm pole. First, it identifies the
gauge bundle ad(E)|y=0 with the tangent bundle TM3. Second, it requires
the fields to behave according to a model singularity

y → 0 : A = ω + . . . , φ =
e

y
+ . . . ,

where ω and e are the Levi-Civita connection and the vielbein of the metric
on M3. Using the identification ad(E) ' TM3, ω and e can be viewed as a
connection on adE and an adjoint-valued one-form, hence the equations
above make sense. The dots stay for higher order terms in y → 0.

I The Nahm pole is a good boundary condition for the KW equations:
• The Nahm pole solves the KW equations to the order O(y−1) as a

consequence of the zero-torsion equation dωe = 0 for the Levi-Civita
connection;

• This boundary condition is elliptic in the sense that the linear operator
obtained from linearizing the KW equations (supplemented with a suitable
gauge fixing condition) at an arbitrary Nahm pole solution is Fredholm
[R. Mazzeo, E. Witten, arXiv:1311.3167].



Teichmüller TQFT: Hilbert Space

To understand what kind of 3d TQFT this setup gives us, let us look at the Hilbert
space that it assigns to a two-manifold C. (Assume that the genus of C is g ≥ 2.)

I For that, take M3 ' Rx0 × C and reduce on C. The result is a sigma-model
on Rx0 × Iy with the target the SO(3) Hitchin’s moduli space MH . Since we
took t = −1, it is an A-model in complex structure K. The symplectic form is
ω = b2ωK and the B-field is B = −b2ωI .

I The NS5 boundary condition at y = 1 reduces to the (B,A,A) canonical
coisotropic brane, supported on the whole of MH , with physics governed by

the J-holomorphic symplectic form b2ΩJ = − ib
2

4π

∫
tr(δA ∧ δA).

I The D5 boundary condition at y = 0 reduces to a (B,A,A) Lagrangian brane
supported on the Hitchin’s section. (This is a statement about the moduli
space of time-independent solutions to the KW equations in a half-space with
the Nahm pole boundary condition. It is proved in the papers [D. Gaiotto,
E. Witten, arXiv:1106.4789; S. He, R. Mazzeo, arXiv:1710.10645].)



Teichmüller TQFT: Hilbert Space

I Recall that the Hitchin’s section is a component of the fixed point set of an
I-holomorphic involution σ: (A, φ)→ (A,−φ). It is isomorphic to the
Teichmüller space T of C. The imaginary part of the holomorphic symplectic
form ΩJ restricted to the Hitchin’s section becomes the Weil-Petersson
Kähler form ωWP of T [N. Hitchin, 1986].

I Our brane configuration is an example of the Branes and Quantization setup
[S. Gukov, E. Witten, arXiv:0809.0305]. The Hilbert space of our TQFT is
the quantization of the Teichmüller space of C with the symplectic form
b2ωWP. Equivalently, it is the space of Liouville conformal blocks of central
charge c = 13 + 6(b2 + b−2). [H. Verlinde, 1990; J. Teschner, arXiv:1005.2846.]

I Hence this theory can be naturally called Teichmüller TQFT.



Teichmüller TQFT: Integration Cycle

I Consider again Teichmüller TQFT on a general three-manifold M3. To
compute the path-integral, we are supposed to solve the reduced KW
equations

∂yA = − ? (dAφ) , ∂yφ = − ? (F − φ ∧ φ) , dA ? φ = 0 .

on M3 × I with the Nahm pole boundary condition

y → 0 : A = ω + . . . , φ =
e

y
+ . . .

at y = 0 and free boundary condition at the other end y = 1. Evaluating KW
solutions at y = 1, we get a subspace S in the infinite-dimensional space of
complex gauge fields ΩA(M3). This subspace, informally, is middle-
dimensional, because the Nahm pole boundary condition is elliptic and leaves
free half of the modes. (Here I am being slightly imprecise about gauge
symmetry.) Then it makes sense to integrate over S the top-dimensional
holomorphic form DA on ΩA(M3).

I The non-trivial part of the action is ib2CS(A) evaluated at y = 1, and the 4d
path-integral reduces to

ZTeichm[M3] =

∫
S

DA exp
(
ib2CS(A)

)
.

It is an analytically-continued Chern-Simons path-integral over S.



Teichmüller TQFT: Integration Cycle

ZTeichm[M3] =

∫
S

DA exp
(
ib2CS(A)

)
.

I Let us look more closely at this integration cycle. First, for the path-integral
to converge, the functional h = Re(iCS(A)) should be bounded from above on
S. We conjecture that this is true for three-manifolds, for which the
Teichmüller TQFT partition function is finite.

I Assuming this to be true, it must be possible to decompose S in Lefschetz
thimbles,

S =
∑

a∈irred
na Ca .

Here a labels irreducible flat PSL(2,C) bundles on M3 modulo topologically
trivial gauge transformations. Reducible critical points do not contribute to
this sum (for M3 of finite volume), as one can see by carefully keeping track
of gauge invariance.

I The partition function decomposes accordingly,

ZTeichm =
∑

a∈irred
na Za ,

where Za is a Chern-Simons integral over a Lefschetz thimble. For b2 → +∞,
such integral has asymptotics

Za ∼ exp
(
ib2CS(a)

)
.



Teichmüller TQFT: Integration Cycle

I To find the decomposition coefficients na, one takes the cycle S and applies
the gradient flow to it. The integer na is the signed count of flows that start
at S and end at a critical point a at y →∞. (Assuming that the counting
problem can be defined. Also, we only consider isolated critical points, for
simplicity.)

I Since S was itself defined by a gradient flow from the Nahm pole, the
numbers na count flows in the half-space y ∈ [0,∞) from the Nahm pole at
y = 0 to the critical point a at infinity.

I We note that this counting problem for the KW equations appears in the
conjectural S-dual description of the analytically-continued Chern-Simons
invariants [E. Witten, “Fiverbranes and Knots,” arXiv:1101.3216].



Integration Cycle for a Hyperbolic Three-Manifold

I Next, suppose that M3 has a complete hyperbolic metric. Then the
integration cycle S can be identified very explicitly.

I Analyzing in examples the state-integral model partition functions for
hyperbolic knot complements, [J.E. Andersen and R. Kashaev,
arXiv:1109.6295] conjectured that they always have the asymptotics

b2 → +∞ : |ZTeichm[M3]| ∼ exp

(
−
b2

2π
V[M3]

)
,

where V [M3] is the hyperbolic volume. For example, the integral for the 41
knot complement is

Z[S3 \ 41] ≈ 3−1/4 exp

(
−
b2

2π

(
V −

iπ2

6

))(
1 +O(b−2)

)
,

where V ≈ 2.03 is the hyperbolic volume of S3 \ 41. This is similar to the
celebrated volume conjecture for the Jones polynomial, with the crucial
difference that there is a minus sign in the exponent.

I It is believed that similar asymptotics hold for the partition function on any
hyperbolic M3. An analog of this statement for gauge group SU(N), N →∞,
is supported by holography. [D. Gang, N. Kim and S. Lee, arXiv:1409.6206].



Teichmüller TQFT on a Hyberbolic Three-Manifold

I Recall that on a hyperbolic three-manifold, there are two special PSL(2,C)
flat connections. If ω and e are the Levi-Civita connection and the vielbein for
the hyperbolic metric, they are Ageom = ω + ie and Ageom = ω − ie. We have

iCS(Ageom) = −
1

2π
V[M3] + iCS(ω) .

Moreover, the following inequality is true [A. Reznikov, “Rationality of
secondary classes” (1996)],

−
1

2π
V[M3] ≤ Re (iCS(A)) ≤

1

2π
V[M3] .

(We will assume that the equality holds only for Ageom and Ageom, which
should be true generically.)

I It means that the exponent that is observed in

b2 → +∞ : |ZTeichm| ∼ exp

(
−
b2

2π
V[M3]

)
is the most subleading one.

I It must be that our integration cycle S is just the Lefschetz thimble for (some
lift of) Ageom! (This implication of the Andersen-Kashaev conjecture for the
Chern-Simons integration cycle was previously considered in [J. B. Bae,
D. Gang and J. Lee, arXiv:1610.09259].)



Teichmüller TQFT on a Hyberbolic Three-Manifold

I Equivalently, it must be that the signed counts na of the KW solutions for
irreducible a are almost all zero, except for a being (some particular lift of)
Ageom.

I For any hyperbolic M3, there exists a very simple model solution to the KW
equations on M3 × R+ with the Nahm pole, which is

A = ω , φ = −e coth y .

At y → +∞, the complex gauge field A = A+ iφ approaches precisely the flat
connection Ageom = ω − ie! We propose the following natural conjecture.

I Conjecture 1. For a hyperbolic M3, the KW equations with t = −1 on
R+ ×M3 with the Nahm pole boundary condition at y = 0 have precisely one
solution that approaches an irreducible flat connection at y → +∞. This
solution is the model solution above.



Teichmüller TQFT on a Hyberbolic Three-Manifold

I I do not currently have a proof for Conjecture 1, but I have some further
evidence for it. Reduced KW equations describe the gradient flow for the
functional

h = Re (iCS(A))

on the space of complex gauge fields ΩA(M3). The function
h0(y) = (coth3 y − 3 coth y)V[M3] is the evaluation of h on the model solution
at a fixed y ∈ I. Let h(y) be the evaluation of h at y on some other solution.

I Conjecture 2. For a hyperbolic M3, for any Nahm pole solution to the
reduced KW equations on M3 × R+ other than the model solution, and for
any y > 0, there is an inequality

h(y) < h0(y) .

That is, any other solution lies below the model solution at every y.

I If this is true, no other solution can converge to a flat connection at y → +∞,
because no flat connection lies below the conjugate geometric flat connection
Ageom = ω − ie.

I Note that Conjecture 2 is formulated for the reduced KW equations. In this
way, it prohibits solutions to the full KW equations that for y →∞ would
approach an irreducible a, but does not prohibit approaching a reducible a.
Also, all these conjectures apply only to the KW equations at t = −1 (or
t = 1, which is equivalent up to φ→ −φ).



Teichmüller TQFT on a Hyberbolic Three-Manifold

I To illustrate this proposal, let us make a simple ansatz for the fields

A = ω + g(y)e , φ = f(y)e . (∗)

The KW equations reduce to a pair of ODEs for the gradient flow on the plane
(f, g) for the polynomial h = f + g2f − 1

3
f3. The profile of this polynomial is

shown on the figure. The model solution is the flow that descends along the
ridge of the hill on the left. It is easy to show that any other flow that rolls
down from the hill (which is equivalent to the Nahm pole boundary
condition) does so faster. Thus, our claim is true for the simple reduction (∗).

I For the full system of KW PDEs, I tested Conjecture 2 by solving the
equations perturbatively in y. The inequality h(y)− h0(y) < 0 holds at least
at the first two non-trivial orders.



Teichmüller TQFT: Quick Remarks

I Before we move to other topics, let me make two quick remarks about
Teichmüller TQFT to put it into some broader physics context.

I First, it is sometimes said that the 3d TQFT with the space of Liouville
conformal blocks as the Hilbert space is PSL(2,R) Chern-Simons. The reason
is that the moduli space of PSL(2,R) flat connections on a genus g ≥ 2
surface C decomposes according to the Euler number as

MPSL(2,R) '
2g−2⋃

d=−(2g−2)

Md ,

and the top component M2g−2 here are the flat connections that come from
the uniformization of C, hence M2g−2 is isomorphic to the Teichmüller space
T . So, in a geometry like R× C, Teichmüller TQFT is really a subsector of
PSL(2,R) Chern-Simons. But on a general three-manifold, Teichmüller
TQFT is just a different theory. The critical points that contribute to the
path-integral are not PSL(2,R) flat connections but rather (on a hyperbolic
M3) the geometric PSL(2,C) flat connection.



Teichmüller TQFT: Quick Remarks

I Second, consider a three-manifold M3 with a boundary ∂M3 whose
components all have negative Euler characteristic. Suppose that M3 admits
at least one (complete, geometrically finite) hyperbolic structure. Then
[D. Sullivan, 1981] for every choice of the conformal structure on ∂M3, that
is, for every point q in the Teichmüller space T of ∂M3, there exists precisely
one hyperbolic structure Aq

geom on M3.

I A natural extension of the Andersen-Kashaev conjecture to this setting would
state that the path-integral over the Lefschetz thimble for Aq

geom computes
the Teichmüller TQFT wavefunction on M3 in Kähler quantization,

ψM3
(q) := 〈q|M3〉 .

The reason is that fixing the conformal structure at infinity is equivalent to
putting an oper boundary condition for Ageom. It is easy to see that this
creates the holomorphic eigenstate 〈q| in Teichmüller TQFT.

I One well-known example of this story is the holographic setup for computing
Virasoro conformal blocks. In that case, M3 is a handlebody with a network
of monodromy defects.



Duality

I Next let us look at the other S-duality frames shown in the figure. In each
frame, we indicated the value of the canonical parameter Ψ in terms of the
squashing parameter b2. The D5 and the NS5 boundary conditions in 4d
N = 4 SYM are denoted by (0, 1) and (1, 0), respectively.

I The element S ∈ SL(2,Z), combined with a reflection, brings the Teichmüller
TQFT setup back to itself and changes the level b2 to 1/b2. The
state-integral model is manifestly invariant under b→ b−1. This basic
S-duality was previously studied in [T. Dimofte, S. Gukov, arXiv:1106.4550].



Duality

I In the duality frames III and IV, we have NS5-type boundary conditions at
both ends of the interval I. (A (±1,±k) boundary condition is the same
thing as (±1, 0) with an extra level k Chern-Simons term.) This leads to two
complex Chern-Simons theories∫

C
DADÃ exp

(
i

2
(k − iv)CS(A) +

i

2
(k + iv)CS(Ã)

)
.

with coupling constants 1
2

(k − iv) = −Ψ and 1
2

(k + iv) = k + Ψ, that is,

CS− III : k = −1, iv = −
b2 + 1

b2 − 1
,

CS− IV : k = 1, iv =
b2 − 1

b2 + 1
.

I CS-IV is the theory of [C. Cordova and D. Jafferis, 1305.2891].

I Let us identify the integration cycles in both of these theories.



Integration Cycle for CS-III

I The path-integral is∫
C

DADÃ exp
(
−iΨCS(A) + i(Ψ− 1)CS(Ã)

)
, Ψ =

1

1− b2
.

I There seems to be a puzzle here. The squashed three-sphere background and
the Teichmüller TQFT all are well-defined at b2 = 1. The state-integral
model partition function is analytic in a finite neighborhood of b2 = 1. Yet for
CS-III, b2 → 1 is the zero coupling limit where the level Ψ goes to infinity.
Normally, a Chern-Simons partition function is not analytic at infinite level!

I These unusual properties can hold, if the integration cycle C is not the usual
one. Let us decompose it into Lefschetz thimbles for A and Ã,

C =
∑

a,b∈irred
na,b Ca × Cb

and find, what should be the coefficients na,b. (For notational simplicity, I
will ignore the fact that flat bundles here should be considered together with
their lift to flat bundles modulo topologically trivial gauge transformations.)

I A quick remark is that the sum goes over irreducible flat connections only.
This is the usual fact about complex Chern-Simons theories, which is due to
infinite volumes of isotropy subgroups for reducible flat connections.



Integration Cycle for CS-III

ZCS−III[M3] =

∫
C

DADÃ exp
(
−iΨCS(A) + i(Ψ− 1)CS(Ã)

)
,

Ψ =
1

1− b2
, C =

∑
a,b∈irred

na,b Ca × Cb .

I The absence of essential singularity at Ψ =∞ implies the following
conditions,
• The coefficient in front of Ψ in the action should vanish at every critical point

that contributes. (This is not entirely obvious. For a proof, see [E. Witten,
arXiv:1001.2933, sec.3.2.1].) Then na,b = 0 for a 6= b, assuming no accidental
coincidences.

I This property of na,b should not be spoiled by Stokes jumps in going around
Ψ =∞. Assuming any two critical points are connected by a Stokes jump at
some phase of Ψ, this implies that na,a = nb,b for all a and b.

I This fixes the integration cycle (up to an overall coefficient) to be the
diagonal sum over all irreducible flat connections,

C =
∑

a∈irred
Ca × Ca . (∗)

I It turns out that Stokes phenomena cancel for this combination of Lefschetz
thimbles for b2 > 0. Thus, on this line the integration cycle is still (∗). Note
that the CS level v on this line is imaginary.



Integration Cycle for CS-III

ZCS−III[M3] =
∑

a∈irred

∫
Ca×Ca

DADÃ exp

(
−
i

4π
ΨCS(A) +

i

4π
(Ψ− 1)CS(Ã)

)
.

I At b2 = 1 or Ψ =∞, the partition function reduces to a one-loop exact
formula

ZCS−III[M3] =
∑

a∈irred
τ2a exp (−iCS(a)) , (∗)

where τa is the Ray-Singer torsion for the flat connection a.

I For example, for M3 ' S3 \ 41 we have [S. Garoufalidis, R. Kashaev,
arXiv:1411.6062]:

Z[S3 \ 41]|b2=1 = 3−1/2e−3πi/4 exp

(
−i
(
π

12
−
iV

2π

))
+ 3−1/2eπi/4 exp

(
−i
(
π

12
+
iV

2π

))
.

I In fact, on the 3d-3d dual side, eq.(∗) is nothing but the formula of
[C. Closset, H. Kim, B. Willett, arXiv:1701.03171] for the 3d N = 2 round S3

partition function as a sum over Bethe vacua. That formula has an extension
to all orders in the expansion in b− 1, which on the Chern-Simons side
corresponds to the full perturbative expansion in CS-III. [D. Gang,
V. Mikhaylov, M. Yamazaki, “to appear”.]



Integration Cycle for CS-IV

I Finally, for CS-IV, which has k = 1 and v = −i b
2−1
b2+1

, it was predicted by

Cordova and Jafferis that the integration cycle is the usual one,
∑
Ca × Ca.

I (In fact, one can guess this from the fact that in configuration IV, the SYM
boundary conditions at y = 0 and y = 1 are NS5 and NS5-type, so
A = A+ iφ and Ã = A− iφ, up to a positive rescaling of φ.)

I The usual integration cycle makes sense for v ∈ R, or |b2| = 1. The partition
function has an essential singularity at b2 = −1, but this is OK, since our
supergravity background is not well-defined for b2 ∈ R≤0.

I In agreement with this, for M3 ' S3 \ 41 numerical experimentation gives

Z[S3 \ 41] = 3−1/2e−iπ/4 exp

(
i

(
(−2ε−1 + i)

V

2π
+

π

12

))
(1 +O(ε))

+ 3−1/2e−iπ/4 exp

(
i

(
(2ε−1 − i)

V

2π
+

π

12

))
(1 +O(ε)) .



Conclusions and Some Open Questions

I Understand the dualities at the level of mirror symmetry in the Hitchin’s
sigma-model. Can we interpret states in CS-III as an actual quantization of
MH with a real symplectic form? Teichmüller TQFT is unitary; how to see
this unitarity in CS-III?

I At c = 1 and c = 25, Liouville conformal blocks are states in a B-model with
a pair of space-filling (B,B,B) branes. What can we learn from this?

I Teichmüller TQFT on an interval with oper and conjugate-oper boundary
conditions is Liouville. What are the corresponding 2d theories in the other
two duality frames?

I We focused on S3
b , that is, |k| = 1, but other values of k are also

interesting, – in particular, k = 0 and k = 2.



Thank you!


