Mirror quintic

X/\mathbb{Z}_5

contains various 2-cycles

$PF \int y w = 0$

open string state

$PF \int g = 0$

$PF \int g \in \text{ext} \mathbb{Q}$

Morava–Hatcher (2006)

2-cycles of $C_4:\ensuremath{\text{C}_4}$

$PF \int_{C_4} w \in \text{quadratic ext} \mathbb{Q}$
\[G \] admetrivial 1 norm (Yde = SLT \text{ in var} (Y))-fold.

(Bryant's constraint)

\[\text{Re}(\text{quartic}) \leq \text{quartic} \]

van Geemen input

(Albanese-Katz)

\(A\)-semistable if

\[x_1^5 + x_2^5 + \ldots + x_5^5 - 5x_1x_2x_3x_4x_5 = 0 \]

implies \(\text{versa} \), \(x_i^5 = 5x_5 \).

PF \(C \) \(\in \) cubic system \(G \).
Extended by PF quarts:

\[(\text{period } 7^3 \text{-term}) \rightarrow \mathbb{Q}. \]

Chow groups, or higher Chow groups

\[\text{CH}(X) \rightarrow \text{PF} \]

\[\text{target of higher Chow groups.} \]

(regularity up to the...)

Calculus in these quaternion balls appear in connection to hyperbolic 7-manifolds.

(Neumann--Zagier) -- Hyperbolic volumes can

...derived by the calculus...
What means could be E_6.

SLAF cycle: in quartic

$\sqrt[3]{Y} \leq X^6$

Conjecture: $\text{red}(P^{13}) = \text{Neron-Severi ring}

Assume the PF calculable

11 the minus cycle