Mirror symmetry, intersection of quadrics, and Hodge theory

Tony Pantev

University of Pennsylvania

String-Math 2018 Tohoku University June 18-22, 2018

Tony Pantev HMS and NAHT University of Pennsylvania

< □ > < A > >

Outline

- joint with R. Donagi and C. Simpson
- HMS for the moduli of flat bundles on curves.
- Non-abelian Hodge theory as a tool for constructing objects in the Fukaya category (= quantum A-branes).
- Examples: Automorphic sheaves on intersections of quadrics.

< m

Main characters: The moduli of flat bundles and the moduli of Hlggs bundles on an algebraic curve.

Setup:

- *C* a smooth compact curve of genus *g* > 1;
- G, ^{*L*}G a pair of affine semisimple algebraic group over \mathbb{C} .

< □ > < A > >

Main characters: The moduli of flat bundles and the moduli of Hlggs bundles on an algebraic curve.

Setup:

- C a smooth compact curve of genus g > 1;
- G, ^{*L*}G a pair of affine semisimple algebraic group over \mathbb{C} .

To avoid special considerations

University of Pennsylvania

Main characters: The moduli of flat bundles and the moduli of Hlggs bundles on an algebraic curve.

Loc = moduli space of flat algebraic G bundles on C = moduli of pairs $\mathbb{V} = (V, \nabla)$, with V a principal G bundle on C, ∇ an algebraic integrable connection on V. Higgs = moduli space of algebraic Higgs G bundles on C = moduli of pairs $\mathbb{E} = (E, \theta)$, with E a principal G bundle on C, $\theta \in H^0(C, \operatorname{ad}(E) \otimes \Omega^1_C)$.

Image: A match a ma

Main characters: The moduli of flat bundles and the moduli of Hlggs bundles on an algebraic curve.

Loc = moduli space of flat algebraic G bundles on C = moduli of pairs $\mathbb{V} = (V, \nabla)$, with V a principal G bundle on C, ∇ an algebraic integrable connection on V. Higgs = moduli space of algebraic Higgs G bundles on C = moduli of pairs $\mathbb{E} = (E, \theta)$, with E a principal G bundle on C, $\theta \in H^0(C, \mathrm{ad}(E) \otimes \Omega^1_C)$.

^{*L*}Loc, ^{*L*}Higgs - the analogous moduli for structure group ${}^{L}G$.

Image: A match a ma

^L**Loc** and **Higgs** are **mirror** Calabi-Yau (hyper-Kähler) spaces.

Explanation: SYZ Mirror Symmetry

■ ^{*L*}Loc and ^{*L*}Higgs belong to the same twistor family and are related by a hyper-Kähler rotation.

^L**Loc** and **Higgs** are **mirror** Calabi-Yau (hyper-Kähler) spaces.

Explanation: SYZ Mirror Symmetry

■ ^{*L*}Loc and ^{*L*}Higgs belong to the same twistor family and are related by a hyper-Kähler rotation.

$$(sLags in {}^{L}Loc) \Leftrightarrow (holoLags in {}^{L}Higgs)$$

Tony Pantev HMS and NAHT University of Pennsylvania

^L**Loc** and **Higgs** are **mirror** Calabi-Yau (hyper-Kähler) spaces.

Explanation: SYZ Mirror Symmetry

- ^{*L*}Loc and ^{*L*}Higgs belong to the same twistor family and are related by a hyper-Kähler rotation.
- ^{*L*}**Higgs** and **Higgs** have Hitchin maps ${}^{L}h : {}^{L}$ **Higgs** $\rightarrow {}^{L}B$ and h : **Higgs** $\rightarrow B$ which are integrable systems.

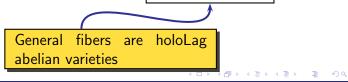
University of Pennsylvania

HMS for moduli spaces (ii)

^L**Loc** and **Higgs** are **mirror** Calabi-Yau (hyper-Kähler) spaces.

Explanation: SYZ Mirror Symmetry

- ^{*L*}Loc and ^{*L*}Higgs belong to the same twistor family and are related by a hyper-Kähler rotation.
- ^{*L*}**Higgs** and **Higgs** have Hitchin maps ^{*L*}*h* : ^{*L*}**Higgs** \rightarrow ^{*L*}*B* and *h* : **Higgs** \rightarrow *B* which are integrable systems.



^L**Loc** and **Higgs** are **mirror** Calabi-Yau (hyper-Kähler) spaces.

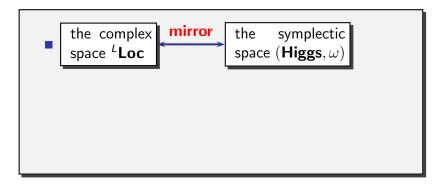
Explanation: SYZ Mirror Symmetry

- ^{*L*}Loc and ^{*L*}Higgs belong to the same twistor family and are related by a hyper-Kähler rotation.
- ^{*L*}**Higgs** and **Higgs** have Hitchin maps ${}^{L}h : {}^{L}$ **Higgs** $\rightarrow {}^{L}B$ and h : **Higgs** $\rightarrow B$ which are integrable systems.
- There is a natural identification B ≅ ^LB under which h : Higgs → B and ^Lh : ^LHiggs → ^LB become dual families of abelian varieties (cf [Donagi-P]).

Odds and ends

HMS for moduli spaces (iii)

In particualr we get:



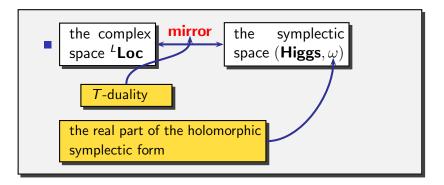
Tony Pantev

HMS and NA

Two examples

HMS for moduli spaces (iii)

In particualr we get:

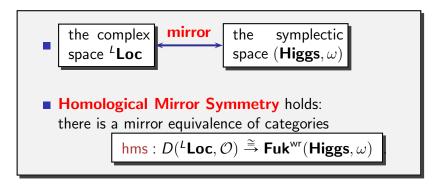


	University of Pen	nsylvania
лнт		

イロト イ団ト イヨト イヨト

HMS for moduli spaces (iii)

In particualr we get:

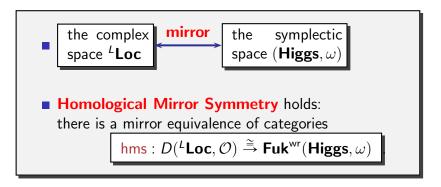


Tony	Pantev
HMS	and NAHT

University of Pennsylvania

HMS for moduli spaces (iii)

In particualr we get:



Goal: Understand the equivalence hms in geometric terms.

Tony Pantev HMS and NAHT University of Pennsylvania

Odds and ends

HMS for moduli spaces (iv)

Lucky break: The wrapped Fukaya category $Fuk^{wr}(Higgs, \omega)$ admits an equivalent description in terms of *D*-modules.

University of Pennsylvania

Lucky break: The wrapped Fukaya category $\mathbf{Fuk}^{wr}(\mathbf{Higgs}, \omega)$ admits an equivalent description in terms of *D*-modules.

Explanation:

Higgs ≃ T[∨] Bun where Bun is the moduli of algebraic G-bundles on C. In particular each cotangent fiber T[∨]_E Bun is an object in Fuk^{wr}(Higgs, ω)

University of Pennsylvania

Image: A math a math

Lucky break: The wrapped Fukaya category $\mathbf{Fuk}^{wr}(\mathbf{Higgs}, \omega)$ admits an equivalent description in terms of *D*-modules.

Explanation:

- Higgs ≃ T[∨] Bun where Bun is the moduli of algebraic G-bundles on C.
- Floer theory (Abouzaid, Fukaya-Seidel-Smith) assigns a *D*-module on Bun to any *P* ∈ ob Fuk^{wr}(Higgs, ω):
 - P induces a stratification on **Bun**

$$S_k = \{E \in \mathbf{Bun} \mid \dim HF(P, T_E^{\vee} \mathbf{Bun}) = k\}.$$

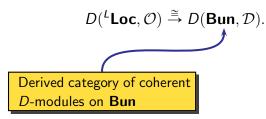
 Family Floer theory endows the bundle of Floer homologies on S_k with a flat connection.

Upshot: In this context HMS can be viewed as an equivalence

 $D({}^{L}\mathbf{Loc},\mathcal{O}) \xrightarrow{\cong} D(\mathbf{Bun},\mathcal{D}).$

University of Pennsylvania

Upshot: In this context HMS can be viewed as an equivalence



University of Pennsylvania

Upshot: In this context HMS can be viewed as an equivalence

$$D({}^{L}\mathbf{Loc}, \mathcal{O}) \xrightarrow{\cong} D(\mathbf{Bun}, \mathcal{D}).$$

Note: This is precisely the setting of the Geometric Langlands correspondece (GLC) which predicts that there is a natural equivalence of categories:

$$\mathfrak{c}: D({}^{L}\mathbf{Loc}, \mathcal{O}) \xrightarrow{\cong} D(\mathbf{Bun}, \mathcal{D}),$$

uniquely characterized by the property that c intertwines the natural symmetries of the source (tensorization operators) and the target (Hecke operators).

Recasting of the problem:

- The cotangent bundle structure of Higgs and family Floer theory convert hms into c.
- The mirrors of the *B*-branes (coherent sheaves) on ^LLoc are naturally *D*-modules on Bun.

University of Pennsylvania

Image: A math a math

Recasting of the problem:

- The cotangent bundle structure of Higgs and family Floer theory convert hms into c.
- The mirrors of the *B*-branes (coherent sheaves) on ^LLoc are naturally *D*-modules on Bun.

Consistent with the Gukov-Witten big brane quantization procedure

University of Pennsylvania

Recasting of the problem:

- The cotangent bundle structure of Higgs and family Floer theory convert hms into c.
- The mirrors of the *B*-branes (coherent sheaves) on ^LLoc are naturally *D*-modules on Bun.

Note: The GLC map \mathfrak{c} is uniquely characterized by the property that it sends the structure sheaves of points \mathbb{V} in ${}^{L}\mathbf{Loc}$ to Hecke eigen *D*-modules $\mathfrak{c}(\mathcal{O}_{\mathbb{V}})$ on **Bun**:

$$H^{\mu}\left(\mathfrak{c}(\mathcal{O}_{\mathbb{V}})\right) = \mathfrak{c}(\mathcal{O}_{\mathbb{V}}) \boxtimes \rho^{\mu}(\mathbb{V}).$$

University of Pennsylvania

< □ > < A > >

Recasting of the problem:

- The cotangent bundle structure of Higgs and family Floer theory convert hms into c.
- The mirrors of the *B*-branes (coherent sheaves) on ^LLoc are naturally *D*-modules on Bun.

Note: The GLC map \mathfrak{c} is uniquely characterized by the property that it sends the structure sheaves of points \mathbb{V} in ${}^{L}\mathbf{Loc}$ to Hecke eigen *D*-modules $\mathfrak{c}(\mathcal{O}_{\mathbb{V}})$ on **Bun**:

$$H^{\mu}\left(\mathfrak{c}(\mathcal{O}_{\mathbb{V}})\right) = \mathfrak{c}(\mathcal{O}_{\mathbb{V}}) \boxtimes \rho^{\mu}(\mathbb{V}).$$

Here μ is an appropriate character, and H^{μ} is the Hecke correspondence on **Bun** bounded by μ .

Tony Pantev HMS and NAHT University of Pennsylvania

Strategy:

- Use non-abelian Hodge theory (NAHT) to rewrite the D-module eigensheaf problem as an eigensheaf probem for (parabolic) Higgs sheaves.
- Use Fourier-Mukai duality (cf. Hausel-Thaddeus, Donagi-P) for the Hitchin systems Higgs → B and ^LHiggs → ^LB to construct a Higgs sheaf satisfying the NAHT and Hecke eigensheaf conditions.

Image: A math a math

Strategy:

- Use non-abelian Hodge theory (NAHT) to rewrite the D-module eigensheaf problem as an eigensheaf probem for (parabolic) Higgs sheaves.
- Use Fourier-Mukai duality (cf. Hausel-Thaddeus, Donagi-P) for the Hitchin systems Higgs → B and ^LHiggs → ^LB to construct a Higgs sheaf satisfying the NAHT and Hecke eigensheaf conditions.

Remark: For any point $\mathbb{V} \in {}^{L}$ **Loc** this gives: the corresponding Hecke eigensheaf on **Bun** or equivalently the object in the Fukaya category of **Higgs** which mirrors the skyscraper sheaf $\mathcal{O}_{\mathbb{V}}$.

There are two examples in which the strategy can be followed through completely. In both cases the moduli space **Bun** is relatively small and is related to an intersection of quadrics in a projective space:

< □ > < A > >

There are two examples in which the strategy can be followed through completely. In both cases the moduli space **Bun** is relatively small and is related to an intersection of quadrics in a projective space:

• $G = PSL_2$, ${}^LG = SL_2$ and C is a \mathbb{P}^1 with five $\mathbb{Z}/2$ orbifold points, i.e. C has orbifold genus 5/4.

< □ > < A > >

There are two examples in which the strategy can be followed through completely. In both cases the moduli space **Bun** is relatively small and is related to an intersection of quadrics in a projective space:

• $G = PSL_2$, ${}^LG = SL_2$ and C is a \mathbb{P}^1 with five $\mathbb{Z}/2$ orbifold points, i.e. C has orbifold genus 5/4.

• $G = PSL_2$, ${}^LG = SL_2$ and C is a smooth curve of genus 2.

Image: A match a ma

There are two examples in which the strategy can be followed through completely. In both cases the moduli space **Bun** is relatively small and is related to an intersection of quadrics in a projective space:

• $G = PSL_2$, ${}^LG = SL_2$ and C is a \mathbb{P}^1 with five $\mathbb{Z}/2$ orbifold points, i.e. C has orbifold genus 5/4.

• $G = PSL_2$, ${}^LG = SL_2$ and C is a smooth curve of genus 2.

In the first case the connected components of **Bun** are related to the intersection of two quadrics in \mathbb{P}^4 while in the second case they are related to the intersection of two quadrics in \mathbb{P}^5 .

Image: A match a ma

	HMS and GLC	Two examples ●000000000000000000000000000000000000	Odds and ends
Genus 5/4			

Eigensheaves on del Pezzo surfaces (i)

Dictionary: Suppose Σ - an orbifold curve which is generically a variety with underlying curve *C* and divisor of orbifold points $D \subset C$. Then

$$\left(\begin{array}{c} \text{holomorphic} \\ \text{Higgs bundles } \Sigma \end{array}\right) \longleftrightarrow \left(\begin{array}{c} \text{tamely ramified strongly} \\ \text{parabolic Higgs bundles} \\ \text{on } (C, D) \end{array}\right)$$

University of Pennsylvania

.

	HMS and GLC	Two examples ●000000000000000000000000000000000000	Odds and ends
Genus 5/4			

Eigensheaves on del Pezzo surfaces (i)

Dictionary: Suppose Σ - an orbifold curve which is generically a variety with underlying curve *C* and divisor of orbifold points $D \subset C$. Then

$$\left(\begin{array}{c} \text{holomorphic} \\ \text{Higgs bundles } \Sigma \end{array}\right) \longleftrightarrow \left(\begin{array}{c} \text{tamely ramified strongly} \\ \text{parabolic Higgs bundles} \\ \text{on } (C, D) \end{array}\right)$$

In particular: Can use parabolic language on (C, D) to pose ans solve the Hecke eigensheaf problem on Σ .

Odds and ends

Genus 5/4

Eigensheaves on del Pezzo surfaces (ii)

Fix $C = \mathbb{P}^1$, and let $\mathbf{Par}_C = p_1 + p_2 + p_3 + p_4 + p_5$.

University of Pennsylvania

Genus 5/4

Eigensheaves on del Pezzo surfaces (ii)

Fix $C = \mathbb{P}^1$, and let $\mathbf{Par}_C = p_1 + p_2 + p_3 + p_4 + p_5$.

Note:

• The moduli space of rank two parabolic bundles on (C, \mathbf{Par}_C) depends on a set of numerical invariants - the degree of the level zero bundle in the parabolic family and the set of parabolic weights.

• The collection of weights has a chamber structure and the moduli space depends only on the chamber and not on the particular collection of weights in that chamber.

Image: A math a math

Genus 5/4

Eigensheaves on del Pezzo surfaces (ii)

Fix $C = \mathbb{P}^1$, and let $\mathbf{Par}_C = p_1 + p_2 + p_3 + p_4 + p_5$.

Theorem: [Donagi-P] There is a maximal chamber of parabolic weights such that:

- every semistable parabolic bundle is stable;
- the connected components of the moduli space corresponding to different degrees are canonically isomorphic to the dP₅ del Pezzo surface

$$X = \mathsf{Bl}_{\mathsf{Par}_{\mathcal{C}}}(S^2 \mathcal{C}).$$

Here $C \subset S^2 C$ diagonally, i.e. X is obtained by blowing up the 5 points $\{p_i\}_{i=1}^5$ on the conic $C \subset S^2 C \cong \mathbb{P}^2$.

	HMS and GLC	Two examples 00●0000000000000	Odds and ends
Genus 5/4			

Eigensheaves on del Pezzo surfaces (iii)

Equivalently:

- X can be described in its anticanonical model as the intersection of two quadrics in P⁴.
- The parameter space of the pencil of quadrics vanishing on X is naturally identified with C and the divisor Par_C corresponds to the locus of singular quadrics in the pencil.

	HMS and GLC	Two examples oo●oooooooooooo	Odds and ends
Genus 5/4			

Eigensheaves on del Pezzo surfaces (iii)

Equivalently:

- X can be described in its anticanonical model as the intersection of two quadrics in P⁴.
- The parameter space of the pencil of quadrics vanishing on X is naturally identified with C and the divisor Par_C corresponds to the locus of singular quadrics in the pencil.

Theorem: [Donagi-P] The wobbly locus in X is the union of the 16 lines $L_I \subset X$.

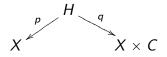
Note: The 16 lines in $X \subset \mathbb{P}^4$ are naturally labeled by the subsets $I \subset \{1, 2, 3, 4, 5\}$ of odd cardinality.

Odds and ends

Genus 5/4

Eigensheaves on del Pezzo surfaces (iv)

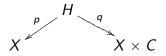
From the point of view of the anti-canonicla model the basic Hecke correspondence parametrizing the modifications of bundles at a single point can be compactified and resolved to the correspondence



- ∢ 🗇 እ

Tony Pantev HMS and NAHT

Eigensheaves on del Pezzo surfaces (iv)



Here:

$$\blacksquare H = \mathsf{Bl}_{\coprod_I \widehat{L_I \times L_I}} \mathsf{Bl}_{\Delta}(X \times X);$$

- the two maps H → X correspond to the blow down map H → X × X followed by the first or second projection;
- the map H→ C is the resolution of the rational map X × X --→ C which sends (x, y) ∈ X × X to the unique λ ∈ C such that Q_λ ⊂ P⁴ contains the line through the two points x, y ∈ P⁴.

Image: A matrix

Eigensheaves on del Pezzo surfaces (v)

Note:

- By construction H is smooth. The general fibers of q are smooth rational curves (Hecke lines) and the general fibers of p are smooth dP₆ del Pezzo surfaces.
- All spaces in the Hecke diagram are naturally equipped with (normal crossings!) parabolic divisors:

$$\operatorname{Par}_{C} = \sum_{i=1}^{5} p_{i}, \operatorname{Par}_{X} = \sum_{I} L_{I}$$

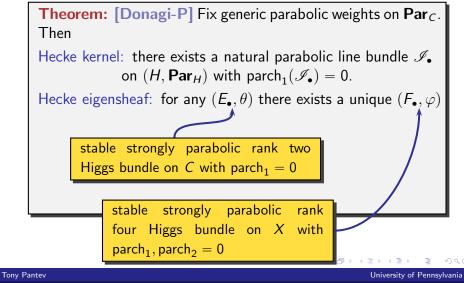
 $\operatorname{Par}_{X \times C} = \operatorname{Par}_{X} \times C + X \times \operatorname{Par}_{C},$

$$\operatorname{Par}_{H} = p^{*}\operatorname{Par}_{X} + q^{*}\operatorname{Par}_{X \times C}.$$

This geometry provides the setup needed to formulate the parabolic version of the Hecke eigensheaf problem.

Image: A match a ma

Eigensheaves on del Pezzo surfaces (v)



HMS and NAHT

Eigensheaves on del Pezzo surfaces (v)

Theorem: [Donagi-P] Fix generic parabolic weights on Par_C . Then

Hecke kernel: there exists a natural parabolic line bundle \mathscr{I}_{\bullet} on (H, \mathbf{Par}_{H}) with $\operatorname{parch}_{1}(\mathscr{I}_{\bullet}) = 0$.

Hecke eigensheaf: for any (E_{\bullet},θ) there exists a unique (F_{\bullet},φ) so that

 $q_*(p^*(F_{\bullet},\varphi)\otimes(\mathscr{I}_{\bullet},0))=p_X^*(F_{\bullet},\phi)\otimes p_C^*(E_{\bullet},\theta)$

Tony Pantev HMS and NAHT University of Pennsylvania

Eigensheaves on del Pezzo surfaces (vi)

Note:

- The theorem contains implicitly a theory of Grothendieck's six functors for parabolic Higgs bundles.
- Together with Donagi and Simpson we developed such a theory to ensure that NAHT converts the parabolic Hecke property in the theorem into the *D*-module Hecke property of the GLC.

< □ > < A > >

Eigensheaves on del Pezzo surfaces (vi)

In particular we proved the following

Theorem: [Donagi-P-Simpson]

- There are explicit algebraic formulas for pushforward, pullback, and tensor product of semistable tame parabolic Higgs bundles with vanishing Chern classes.
- Under the NAH correspondence the constructions are compatible with the standard pushforwards, pullbacks, and tensor products of *D*-modules, and with L² pushforwards, pullbacks, and tensor products of harmonic bundles.

- ∢ 🗇 እ

Eigensheaves on del Pezzo surfaces (vi)

In particular we proved the following

Theorem: [Donagi-P-Simpson]

- There are explicit algebraic formulas for pushforward, pullback, and tensor product of semistable tame parabolic Higgs bundles with vanishing Chern classes.
- Under the NAH correspondence the constructions are compatible with the standard pushforwards, pullbacks, and tensor products of *D*-modules, and with L² pushforwards, pullbacks, and tensor products of harmonic bundles.

Note: These algebraic formulas are crucial for the construction and the proof of the properties of (F_{\bullet}, φ) .

Odds and ends

Genus 5/4

Eigensheaves on del Pezzo surfaces (vii)

Strategy of proof: Construct (F_{\bullet}, φ) and check the Mochizuki and Hecke conditions by abelianization and higher dimensional versions of the spectral cover construction.

Tony Pantev HMS and NAHT

Eigensheaves on del Pezzo surfaces (vii)

Starting point: Understand the spectral data for (E_{\bullet}, θ) .

- (E_{\bullet}, θ) is given by spectral data: a parabolic line bundle on the spectral cover \widetilde{C} of *C* corresponding to θ .
- Genericity of (E_•, θ)) ensures that C̃ is a smooth courve of genus two.
- Strong parabolicity implies that C̃ → C is branched at all five points of the parabolic divisor Par_C ⊂ C so specifying C̃ is equivalent to specifying the sixth branch point p₆ ∈ C.
- The moduli space ^LHiggs of strongly parabolic Higgs bundles on *C* is a 4-dimensional integrable system with Hitchin base B = H⁰(C, O(1)).

Image: A match a ma

Eigensheaves on del Pezzo surfaces (viii)

Step one: Understand the spectral cover for (F_{\bullet}, φ) .

- The Hitchin fiber through (E_{\bullet}, θ) can be identified with the Jacobian J of \widetilde{C} .
- The natural rational map ^LHiggs --→ X restricts to a rational map J --→ X which is quasi finite of degree 4 and fails to be proper over the wobbly locus Par_X ⊂ X.
- The map J --→ X is not defined at the 16 points of order two in J. Blowing these points up resolves the map to a 4 : 1 finite cover f : Y → X -the modular spectral cover corresponding to C.
- The map $f: Y \to X$ decomposes into two double covers: $Y \to \overline{Y}$ and $\overline{Y} \to X$ where \overline{Y} is the Kummer K3 for the ableian surface J.

Eigensheaves on del Pezzo surfaces (ix)

Step two: Understand the spectral line bundle for (F_{\bullet}, φ) .

- The Fourier-Mukai transform of the skyscraper sheaf of (E_•, θ) ∈ J is a degree zero line bundle on J which pulls back to a line bundle L(E_•, θ) on Y.
- Choose undeterminate parabolic weights e along
 Par_Y = f*Par_X and define F_• to be the *f*-pushforward of the resulting parabolic line bundle:

$$F_{\bullet} = \mathscr{L}_{(E_{\bullet},\theta)} \left(\mathsf{e} \cdot \mathbf{Par}_{Y} \right)_{\bullet}.$$

The rational map $J \rightarrow T^{\vee}X$ resolves to a section $\alpha \in H^0(Y, f^*\Omega^1_X(\log \operatorname{Par}_X))$ and we define $\varphi = f_*(\alpha \otimes -).$

Image: A match a ma

	HMS and GLC	Two examples 00000000000000000	Odds and ends
Genus 5/4			

Eigensheaves on del Pezzo surfaces (x)

- Use the fact that L(E,θ) is an eigensheaf for the abelianized Hecke correspondece to rewrite the Mochizuki and Hecke conditions on (F,φ) as equations on the parabolic weights of (F,φ).
- Show that the numerical equations have a unique solution in terms of the parabolic weights for (E_•, θ) - a higher dimensional version of the Aomoto map.

	HMS and GLC	Two examples 000000000●000000	Odds and ends
Genus 5/4			

Eigensheaves on del Pezzo surfaces (x)

- Use the fact that L(E,θ) is an eigensheaf for the abelianized Hecke correspondece to rewrite the Mochizuki and Hecke conditions on (F,φ) as equations on the parabolic weights of (F,φ).
- Show that the numerical equations have a unique solution in terms of the parabolic weights for (E_•, θ) - a higher dimensional version of the Aomoto map.

Note: Carrying this out requires the algebraic formalism for computing pushforwards of Higgs bundles and computations with spectral covers of the abelianized Hecke correspondence.

Fix C - a smooth curve of genus 2.

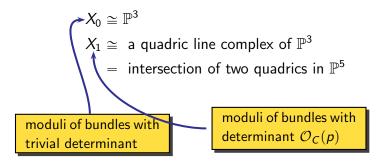
The moduli space of rank two bundles of fixed determinant on C has two interesting components:

$$X_0 \cong \mathbb{P}^3$$

 $X_1 \cong$ a quadric line complex of \mathbb{P}^3
= intersection of two quadrics in \mathbb{P}^5

Fix C - a smooth curve of genus 2.

The moduli space of rank two bundles of fixed determinant on C has two interesting components:



Tony Pantev HMS and NAHT University of Pennsylvania

Theorem: [Pal-Pauly]

- The wobbly divisor in X_0 has 17 components. It consists of the quartic Kummer surface for the Jacobian of C and the 16 trope planes - the planes in \mathbb{P}^3 that are tangent to the Kummer surface along a conic.
- The wobbly divisor in X_1 is an irreducible surface.

University of Pennsylvania

Theorem: [Pal-Pauly]

- The wobbly divisor in X_0 has 17 components. It consists of the quartic Kummer surface for the Jacobian of C and the 16 trope planes - the planes in \mathbb{P}^3 that are tangent to the Kummer surface along a conic.
- The wobbly divisor in X_1 is an irreducible surface.

Note: There is a new feature in this case: the wobbly divisor in X_0 is not normal crossings in codimension two.

Theorem: [Pal-Pauly]

- The wobbly divisor in X_0 has 17 components. It consists of the quartic Kummer surface for the Jacobian of C and the 16 trope planes - the planes in \mathbb{P}^3 that are tangent to the Kummer surface along a conic.
- The wobbly divisor in X_1 is an irreducible surface.

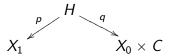
Note: There is a new feature in this case: the wobbly divisor in X_0 is not normal crossings in codimension two. In fact the same holds for X_1 .

Theorem: [Donagi-P-Simpson] Fix a Weierstrass point p of C and identify X_1 with the moduli of stable rank two bundles on C of determinant $\mathcal{O}_C(p)$. Let \overline{C} be the 16-sheeted etale cover of C parametrizing degree zero line bundles L on C such that $L^{\otimes 2}(p)$ is effective.

- There is a natural embedding of the curve *C* in the quadric line complex *X*₁ and the wobbly divisor in *X*₁ is the union of all lines tangent to *C*.
- The wobbly divisor in X₁ has a curve of cusps isomorphic to C and a curve of nodes isomorphic to the quotient of C by the lift of the hyperelliptic involution of C.

	HMS and GLC	Two examples ○○○○○○○○○○○○○○○○	Odds and ends
Genus 2			

Again the basic Hecke correspondence can be compactified and resolved to a correspondence:



which is an incidence correspondence between points and planes in $\mathbb{P}^5.$

Eigensheaves on quadric line complexes (iv) **Explanation**:

- Viewing X₁ as the base locus of a pencil of quadrics in P⁵ we can identify C with the moduli of rulings by planes P² of the quadrics in the pencil.
- Thus a point $q \in C$ determines a quadric Q in the pencil and a ruling R of Q.
- Viewing X₁ as a quadric line complex of X₀ identifies X₀ with a ruling of Q: a point x ∈ X₀ gives a plane in Q, i.e. the plane A_x ⊂ Q ⊂ P⁵ parametrizing all lines in X₀ passing through x.
- *H* consists of all triples $(\ell, x, q) \in X_1 \times X_0 \times C$ such that $\ell \in A_x$.

Eigensheaves on quadric line complexes (v)

- **Theorem:** [Donagi-P-Simpson] Let (E, θ) be a stable rank two Higgs bundle on *C* with trivial determinant and a smooth spectral cover. Then there exist a unique rank 8 tame strongly parabolic Higgs bundle (F_{\bullet}, φ) on $X = X_0 \coprod X_1$ so that
 - The parabolic structure of F_{\bullet} is along the wobbly divisor in X.
 - F. satisfies Mochizuki's conditions: it is stable and with vanishing parabolic Chern classes.
 - (in progress) There exists a natural parabolic line bundle
 𝒴_• on H so that (𝒴_•, φ) is a Hecke eigensheaf of
 eigenvalue (𝒴_•, θ) for the Hecke kernel (𝒴_•, 0).

Image: A math a math

Remark: The proof of this result requires tackling of several general difficulties that are not present in the del Pezzo case:

- One needs to resolve the wobbly divisors to be normal crossings in codimension two before Mochizuki's conditions can even be formulated. We handle this issue by going to a branched cover of the moduli space.
- In the construction of the Hecke eigensheaf one has to work with Prym varieties rather than Jacobians.
- One needs a conceptual way of resolving the indeterminacies of the rational maps from these Prym varieties to X. We give such a procedure based on successive blow ups in attracting sets for the C[×]-action on Higgs.

NAHT and GLC

NAHT (i)

Non Abelian Hodge theory (NAHT) [Hitchin, Donaldson, Corlette, Simpson, Saito, Sabbah, Mochizuki, ...]: in a nutshell gives an equivalence

(flat bundles) \leftrightarrow (Higgs bundles)

The equivalence is mediated by a richer object: **harmonic bundle** or **twistor** *D*-module which specializes to both flat bundles and Higgs bundles.

Image: A match a ma

NAHT and GLC

NAHT (i)

Non Abelian Hodge theory (NAHT) [Hitchin, Donaldson, Corlette, Simpson, Saito, Sabbah, Mochizuki, ...]: in a nutshell gives an equivalence

(flat bundles) \leftrightarrow (Higgs bundles)

The equivalence is mediated by a richer object: **harmonic bundle** or **twistor** *D*-module which specializes to both flat bundles and Higgs bundles.

A variant of Deligne's notion of a λ connection: at $\lambda = 1$ we have a flat connection, while at $\lambda = 0$ we have a Higgs bundle.

Tony Pantev HMS and NAHT University of Pennsylvania

NAHT and GLC

NAHT (ii)

Note: For the application to GLC we need a ramified higher dimensional version of NAHT developed in a sequence of deep works by Biquard, Jost-Yang-Zuo, Sabbah, Saito, Mochizuki, and Simpson.

< □ > < A > >

Tony Pantev HMS and NAHT

NAHT and GLC

NAHT (ii)

Note: For the application to GLC we need a ramified higher dimensional version of NAHT. This theory has several special features:

- It deals with ramified objects parabolic local systems and parabolic Higgs bundles.
- The objects involved must satisfy new subtler stability conditions discovered by Mochizuki.
- Application to GLC hinge on verification of Mochizuki's conditions. This requires a detailed analysis of instability loci in moduli spaces.

NAHT and GLC

NAHT (ii)

Note: For the application to GLC we need a ramified higher dimensional version of NAHT. This theory has several special features:

- It deals with ramified objects parabolic local systems and parabolic Higgs bundles.
- The objects involved must satisfy new subtler stability conditions discovered by Mochizuki.
- Application to GLC hinge on verification of Mochizuki's conditions. This requires a detailed analysis of instability loci in moduli spaces.

In NAHT we have to work with the moduli **spaces**, rather than the **stacks**. So stability is important.

Unstable locus The locus in **Higgs** consisting of semistable Higgs bundles whose uderlying bundle is unstable. Wobbly locus The locus in **Bun** consisting of non-very-stable bundles.

Tony Pantev HMS and NAHT

Unstable locus The locus in **Higgs** consisting of semistable Higgs bundles whose uderlying bundle is unstable. Wobbly locus The locus in **Bun** consisting of non-very-stable bundles.

A bundle *E* is **very stable** if the only nilpotent Higgs field θ on *E* is $\theta = 0$. (\Leftrightarrow the cotangent fiber $T_{\{E\}}^{\vee}$ **Bun** meets the Hitchin fiber over 0 only at the point $\theta = 0$.)

Image: A math a math

Unstable locus The locus in **Higgs** consisting of semistable Higgs bundles whose uderlying bundle is unstable. Wobbly locus The locus in **Bun** consisting of non-very-stable bundles.

A bundle *E* is **very stable** if the only nilpotent Higgs field θ on *E* is $\theta = 0$. (\Leftrightarrow the cotangent fiber $T_{\{E\}}^{\vee}$ **Bun** meets the Hitchin fiber over 0 only at the point $\theta = 0$.) Laumon: very stable implies stable.

Image: A matrix

Unstable locus The locus in **Higgs** consisting of semistable Higgs bundles whose uderlying bundle is unstable. Wobbly locus The locus in **Bun** consisting of non-very-stable bundles.

A bundle *E* is **very stable** if the only nilpotent Higgs field θ on *E* is $\theta = 0$. (\Leftrightarrow the cotangent fiber $T_{\{E\}}^{\vee}$ **Bun** meets the Hitchin fiber over 0 only at the point $\theta = 0$.) Laumon: very stable implies stable.

A bundle *E* is **wobbly** if it is stable but not very stable.

Image: A matrix

Unstable locus The locus in **Higgs** consisting of semistable Higgs bundles whose uderlying bundle is unstable. Wobbly locus The locus in **Bun** consisting of non-very-stable bundles.

A bundle *E* is **very stable** if the only nilpotent Higgs field θ on *E* is $\theta = 0$. (\Leftrightarrow the cotangent fiber $T_{\{E\}}^{\vee}$ **Bun** meets the Hitchin fiber over 0 only at the point $\theta = 0$.) Laumon: very stable implies stable.

A bundle E is **wobbly** if it is stable but not very stable. **Peon-Nieto-Pauly:** The wobbly locus is the 'image' of the unstable locus.

	HMS and GLC	Two examples 000000000000000	Odds and ends
NAHT and GLC			

NAHT: the theorems (i)

Theorem: [Corlette-Simpson] Let $(X, \mathcal{O}_X(1))$ be a smooth complex projective variety. Then there is a natural equivalence of dg \otimes -categories:

$$\mathbf{nah}_X : \begin{pmatrix} \text{finite rank} \\ \text{flat bundles} \\ \text{on } X \end{pmatrix} \longrightarrow \begin{pmatrix} \text{finite rank} & \mathcal{O}_X(1) - \\ \text{semistable} & \text{Higgs} \\ \text{bundles on } X & \text{with} \\ ch_1 = 0 \text{ and } ch_2 = 0 \end{pmatrix}$$

	Universit	of Pennsy	Ivania
--	-----------	-----------	--------

э

- 4 回 ト - 4 回 ト

NAHT: the theorems (ii)

Mochizuki proved a version of the NAH correspondence which allows for singularities of the objects involved.

University of Pennsylvania

NAHT and GLC

NAHT: the theorems (ii)

Theorem: [Mochizuki] Let $(X, \mathcal{O}_X(1))$ be a polarized projective variety and let $D \subset X$ be an effective divisor. Suppose that we have a closed subvariety $Z \subset X$ of codimension ≥ 3 , such that X - Z is smooth and D - Z is a normal crossing divisor. Then there is a canonical equivalence of dg \otimes -categories:

 $\left(\begin{array}{c} \text{finite rank tame} \\ \text{parabolic} & \text{flat} \\ \text{bundles} & \text{on} \\ (X, D) \end{array}\right) \xrightarrow{\text{nah}_{X,D}}$

 $\left(\begin{array}{ccc} {\rm finite\ rank\ locally\ abelian\ tame\ parabolic\ Higgs\ bundles\ on\ (X,D)\ which\ are\ {\cal O}_X(1)-{
m semistable\ and\ satisfy\ parch_1=0\ and\ parch_2=0\ }
ight)$

Image: A math a math

э

	HMS and GLC	Two examples 00000000000000000	Odds and ends ○○○○○●○○○○○○○○○
NAHT and GLC			

NAHT: the theorems (iii)

Mochizuki requires three basic ingredients for this theorem:

- (1) a good compactification, which is smooth and where the boundary is a divisor with normal crossings away from codimension 3;
- (2) a local condition: tameness (the Higgs field is allowed to have at most logarithmic poles along D), and compatibility of filtrations (the parabolic structure is locally isomorphic to a direct sum of rank one objects);
- (3) a global condition: vanishing of parabolic Chern classes.

NAHT: the theorems (iv)

Another important ingredient is Mochizuki's extension theorem

Theorem: [Mochizuki] Let *U* be a quasi-projective variety with two compactifications $\phi : U \rightarrow X$, and $\psi : U \rightarrow Y$ where:

- X, Y are projective and irreducible;
- X is smooth and X U is a normal crossing divisor away from codimension 3;

Then the restriction from X to U followed by the middle perversity extension from U to Y gives an equivalence of categories:

 $\phi_{*!} \circ \psi^* : \left(\begin{array}{cc} \text{irreducible} & \text{tame} \\ \text{parabolic} & \text{flat} \\ \text{bundles on } (X, D) \end{array}\right) \longrightarrow \left(\begin{array}{c} \text{simple } \mathcal{D}\text{-modules on } Y \\ \text{which are smooth on } U \end{array}\right)$

Image: Image:

	HMS and GLC	Two examples 000000000000000	Odds and ends ○○○○○○●○○○○○○○
The plan			

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ → ≣ - ∽��?

University of Pennsylvania

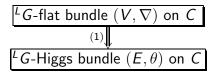
|--|--|--|--|--|

Odds and ends

^{*L*}G-flat bundle
$$(V, \nabla)$$
 on *C*

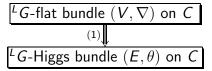
University of Pennsylvania

Introduction
The plan



University of Pennsylvania

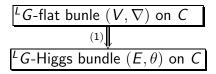
	HMS and GLC	Two examples 000000000000000	Odds and ends ○○○○○○●○○○○○○○○
The plan			



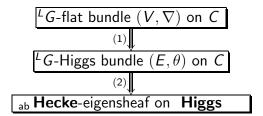
This is the Corlette-Simpson non-abelian Hodge correspondence $(E, \theta) = \operatorname{nah}_{C}(V, \nabla)$ on the smooth compact curve C.

< 67 ▶

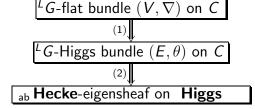
Introduction
The plan



University of Pennsylvania



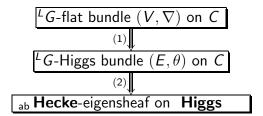
University of Pennsylvania



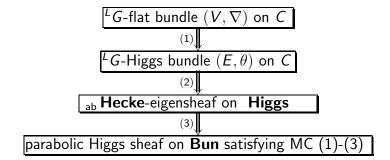
The functor (2) sends $(E, \theta) \in {}^{L}$ Higgs to FM $(\mathcal{O}_{(E,\theta)})$.

University of Pennsylvania

Image: A math a math

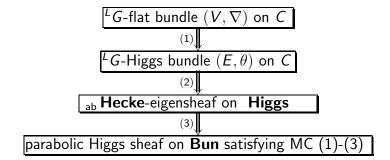


University of Pennsylvania



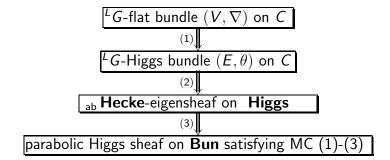
University of Pennsylvania

Image: A mathematical states of the state



University of Pennsylvania

Image: A mathematical states of the state

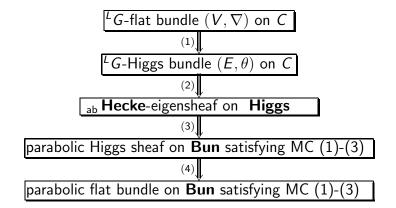


University of Pennsylvania

Image: A mathematical states of the state

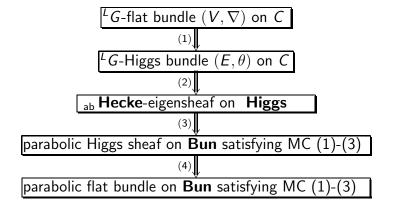
Tony Pantev

HMS and NAHT



University of Pennsylvania

Image: A math a math

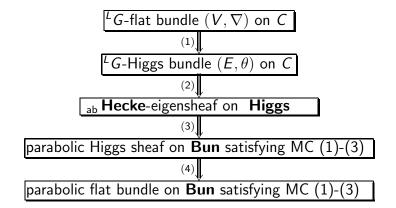


The functor (4) is the parabolic non-abelian Hodge correspondence of Mochizuki.

Image: A match a ma

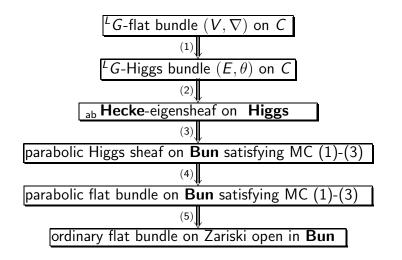
Tony Pantev

HMS and NAHT



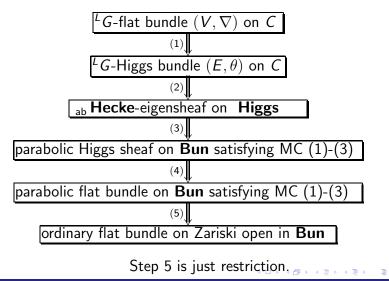
University of Pennsylvania

Image: A match a ma

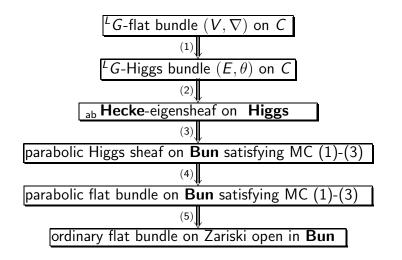


University of Pennsylvania

Image: A match a ma

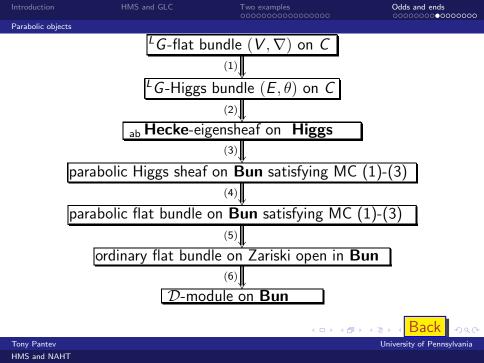


Tony Pantev HMS and NAHT University of Pennsylvania



University of Pennsylvania

Image: A match a ma



Parabolic sheaves

Fix a pair (X, D), where

- X a compact complex manifold;
- $D \subset X$ a divisor with simple normal crossings;
- $\square D = \bigcup_{i \in S} D_i$ the irreducible decomposition of D.

University of Pennsylvania

Image: A match a ma

Parabolic sheaves

Definition: A torsion free parabolic sheaf on (X, D) is a collection of torsion free coherent sheaves $\{\mathcal{E}_{\alpha}\}_{\alpha \in \mathbb{D}^{S}}$ together with inclusions $\mathcal{E}_{\alpha} \subset \mathcal{E}_{\beta}$ of sheaves of \mathcal{O}_X -modules, specified for all $\alpha \leq \beta$, satisfying the conditions: **[semicontinuity]** for every $\alpha \in \mathbb{R}^{S}$, there exists a real number c > 0 so that $\mathcal{E}_{\alpha+\epsilon} = \mathcal{E}_{\alpha}$ for all functions $\varepsilon : S \rightarrow [0, c]$. **[support]** if $\delta_i : S \to \mathbb{R}$ is the characteristic function of *i*, then for all $\alpha \in \mathbb{R}^{S}$ we have $\mathcal{E}_{\alpha+\delta_{i}} = \mathcal{E}_{\alpha}(D_{i})$ (compatibly with the inclusion).

Parabolic objects

Flags and weights

Fix a parabolic torsion free sheaf \mathbf{E}_{\bullet} on (X, D) and $\mathbf{c} \in \mathbb{R}^{S}$.

University of Pennsylvania

Flags and weights

Fix a parabolic torsion free sheaf **E**. on (X, D) and $\mathbf{c} \in \mathbb{R}^{S}$. For every $i \in S$ we get an induced filtration $\{{}^{i}F_{a}\}_{c_{i}-1 < a \leq c_{i}}$ of the restricted sheaf $\mathbf{E}_{\mathbf{c}|D_{i}}$.

< □ > < A > >

Flags and weights

Fix a parabolic torsion free sheaf \mathbf{E}_{\bullet} on (X, D) and $\mathbf{c} \in \mathbb{R}^{S}$. For every $i \in S$ we get an induced filtration $\{{}^{i}F_{a}\}_{c_{i}-1 < a \leq c_{i}}$ of the restricted sheaf $\mathbf{E}_{\mathbf{c}|D_{i}}$.

$${}^{i}F_{a} = \bigcup_{\substack{\alpha \leq \mathbf{c} \\ \alpha_{i} \leq a}} \mathbf{E}_{\alpha}$$

University of Pennsylvania

Flags and weights

Fix a parabolic torsion free sheaf \mathbf{E}_{\bullet} on (X, D) and $\mathbf{c} \in \mathbb{R}^{S}$. For every $i \in S$ we get an induced filtration $\{{}^{i}F_{a}\}_{c_{i}-1 < a \leq c_{i}}$ of the restricted sheaf $\mathbf{E}_{\mathbf{c}|D_{i}}$. Define ${}^{i}\operatorname{gr}_{a}\mathbf{E}_{\mathbf{c}} := {}^{i}F_{a}/{}^{i}F_{i_{F\leq a}}$. [semicontinuity] \Rightarrow the set of parabolic weights

weights
$$(\mathbf{E}_{\mathbf{c}}, i) = \left\{ a \in (c_i - 1, c_i] \mid {}^i \mathrm{gr}_a \neq 0 \right\}$$

is finite **Note:** The sheaf $\mathbf{E}_{\mathbf{c}}$ together with the flags $\{{}^{i}F_{a} | i \in S, a \in \text{weights}(\mathbf{E}_{\mathbf{c}}, i)\}$ reconstruct the parabolic sheaf \mathbf{E}_{\bullet} .

Image: A match a ma

Locally abelian parabolic bundles (i)

Example: A **parabolic line bundle** is a parabolic sheaf F_{\bullet} for which all sheaves F_{α} are invertible. If $\mathbf{a} \in \mathbb{R}^{S}$, then define a parabolic line bundle $\mathcal{O}_{X}(\sum_{i \in S} \mathbf{a}_{i}D_{i})_{\bullet}$ by setting

$$\left(\mathcal{O}_X\left(\sum_{i\in S}\mathbf{a}_i D_i\right)\right)_{\boldsymbol{\alpha}} := \mathcal{O}_X\left(\sum_{i\in S} [\mathbf{a}_i + \boldsymbol{\alpha}_i] D_i\right)$$

Claim: Every parabolic line bundle F_{\bullet} is isomorphic to $L \otimes \mathcal{O}_X (\sum_{i \in S} \mathbf{a}_i D_i)_{\bullet}$ for some $L \in \operatorname{Pic}(X)$, and some $\mathbf{a} \in \mathbb{R}^S$.

University of Pennsylvania

Image: A match a ma

Locally abelian parabolic bundles (ii)

Definition: A parabolic sheaf F_{\bullet} is a **locally abelian bundle**, if in a Zariski neighborhood of any point $x \in X$ there is an isomorphism between F_{\bullet} and a direct sum of parabolic line bundles.

Note: A parabolic bundle $(\mathbf{E}_{\mathbf{c}}, \{{}^{i}F_{\bullet}\}_{i\in S})$ is locally abelian iff on every intersection $D_{i_{1}} \cap \cdots \cap D_{i_{k}}$ the iterated graded ${}^{i_{1}}\mathrm{gr}_{a_{1}} \cdots {}^{i_{k}}\mathrm{gr}_{a_{k}} \mathbf{E}_{\mathbf{c}}$ does not depend on the order of the components.

Variant: We can define similarly locally abelian parabolic local systems, Higgs bundles, or more generally locally abelian parabolic λ -connections.

Image: A match a ma

Locally abelian parabolic λ -connections (i)

Let $\lambda \in \mathbb{C}$. A λ -connection with tame ramification along D, is a pair $(E, \mathbb{D}^{\lambda})$, where:

• E is a holomorphic vector bundle on X;

■ \mathbb{D}^{λ} : $E \to E \otimes \Omega^1_X(\log D)$, is a \mathbb{C} -linear map satisfying the λ -twisted Leibnitz rule

$$\mathbb{D}^{\lambda}(f \cdot s) = f \mathbb{D}^{\lambda} s + \lambda s \otimes df.$$

We say that \mathbb{D}^{λ} is flat if $\mathbb{D}^{\lambda} \circ \mathbb{D}^{\lambda} = 0$. Note:

(flat 1-connection) = (flat connection with regular singularities) (flat 0-connection) = (Higgs bundle with logarithmic poles)

< □ > < A > >

Parabolic objects

Locally abelian parabolic λ -connections (ii)

Definition: A tame parabolic λ -connection is a pair $(E_{\bullet}, \mathbb{D}^{\lambda})$, where

E E_{\bullet} is a prabolic bundle on (X, D);

■ \mathbb{D}^{λ} : $E_{\alpha} \to E_{\alpha} \otimes \Omega^{1}_{X}(\log D)$ is a tame flat λ -connection specified for all $\alpha \in \mathbb{R}^{5}$ (compatibly with the inclusions).

A tame parabolic λ -connection $(E_{\bullet}, \mathbb{D}^{\lambda})$ is locally abelian if the underlying bundle E_{\bullet} is locally abelian. It is **strongly parabolic** if the action of the residue of \mathbb{D}^{λ} on the associated graded for the parabolic filtration is zero.

Parabolic objects

Parabolic Chern classes (i)

Let \mathcal{E}_{\bullet} be a parabolic torsion free sheaf on (X, D), then the parabolic Chern character of \mathcal{E}_{\bullet} is given by the **lyer-Simpson** formula:

University of Pennsylvania

Parabolic Chern classes (i)

Let \mathcal{E}_{\bullet} be a parabolic torsion free sheaf on (X, D), then the parabolic Chern character of \mathcal{E}_{\bullet} is given by the **lyer-Simpson** formula:

$$\mathsf{parch}(\mathcal{E}_{\bullet}) = \mathsf{parch}({}_{\mathsf{c}} E) = \frac{\prod_{i \in S} \int_{c_i}^{c_i+1} d\alpha_i \left[ch\left(\mathcal{E}_{\alpha_i}\right) e^{-\sum_{i \in S} \alpha_i D_i} \right]}{\prod_{i \in S} \int_0^1 d\alpha_i e^{-\sum_{i \in S} \alpha_i D_i}}.$$

University of Pennsylvania

Image: Image:

Parabolic Chern classes (i)

Let \mathcal{E}_{\bullet} be a parabolic torsion free sheaf on (X, D), then the parabolic Chern character of \mathcal{E}_{\bullet} is given by the **lyer-Simpson** formula:

$$\mathsf{parch}(\mathcal{E}_{\bullet}) = \mathsf{parch}(_{\mathsf{c}}E) = \frac{\prod_{i \in S} \int_{c_i}^{c_i+1} d\alpha_i \left[ch\left(\mathcal{E}_{\alpha_i}\right) e^{-\sum_{i \in S} \alpha_i D_i} \right]}{\prod_{i \in S} \int_0^1 d\alpha_i e^{-\sum_{i \in S} \alpha_i D_i}}.$$

 $\mathbf{c} \in \mathbb{R}^{S}$ is any base point

University of Pennsylvania

- ∢ ⊢⊒ →

Parabolic Chern classes (i)

Let \mathcal{E}_{\bullet} be a parabolic torsion free sheaf on (X, D), then the parabolic Chern character of \mathcal{E}_{\bullet} is given by the **lyer-Simpson** formula:

$$\mathsf{parch}(\mathcal{E}_{\bullet}) = \mathsf{parch}({}_{\mathbf{c}}E) = \frac{\prod_{i \in S} \int_{c_i}^{c_i+1} d\alpha_i \left[ch\left(\mathcal{E}_{\alpha_i}\right) e^{-\sum_{i \in S} \alpha_i D_i} \right]}{\prod_{i \in S} \int_0^1 d\alpha_i e^{-\sum_{i \in S} \alpha_i D_i}}.$$

Note: Given $\mathbf{c} \in \mathbb{R}^{S}$ define the **c**-truncation $_{\mathbf{c}}E$ of \mathcal{E}_{\bullet} = the collection $\{\mathcal{E}_{\alpha}\}_{\mathbf{c} < \alpha \leq \mathbf{c} + \delta}$, with $\delta = \sum_{i \in S} \delta_{i}$.

Image: A math a math

Parabolic Chern classes (i)

Let \mathcal{E}_{\bullet} be a parabolic torsion free sheaf on (X, D), then the parabolic Chern character of \mathcal{E}_{\bullet} is given by the **lyer-Simpson** formula:

$$\mathsf{parch}(\mathcal{E}_{\bullet}) = \mathsf{parch}({}_{\mathbf{c}}E) = \frac{\prod_{i \in S} \int_{c_i}^{c_i+1} d\alpha_i \left[ch\left(\mathcal{E}_{\alpha_i}\right) e^{-\sum_{i \in S} \alpha_i D_i} \right]}{\prod_{i \in S} \int_0^1 d\alpha_i e^{-\sum_{i \in S} \alpha_i D_i}}.$$

Note: Given $\mathbf{c} \in \mathbb{R}^{S}$ define the **c**-truncation $_{\mathbf{c}}E$ of \mathcal{E}_{\bullet} = the collection $\{\mathcal{E}_{\alpha}\}_{\mathbf{c}<\alpha\leqslant \mathbf{c}+\delta}$, with $\delta = \sum_{i\in S} \delta_{i}$. [support] $\Rightarrow \mathcal{E}_{\bullet}$ is effectively reconstructed by any truncation $_{\mathbf{c}}E$.

Image: A match a ma

Parabolic Chern classes (i)

Let \mathcal{E}_{\bullet} be a parabolic torsion free sheaf on (X, D), then the parabolic Chern character of \mathcal{E}_{\bullet} is given by the **lyer-Simpson** formula:

$$\mathsf{parch}(\mathcal{E}_{\bullet}) = \mathsf{parch}({}_{\mathbf{c}}E) = \frac{\prod_{i \in S} \int_{c_i}^{c_i+1} d\alpha_i \left[ch\left(\mathcal{E}_{\alpha_i}\right) e^{-\sum_{i \in S} \alpha_i D_i} \right]}{\prod_{i \in S} \int_0^1 d\alpha_i e^{-\sum_{i \in S} \alpha_i D_i}}.$$

Note: Given $\mathbf{c} \in \mathbb{R}^{S}$ define the **c**-truncation $_{\mathbf{c}}E$ of \mathcal{E}_{\bullet} = the collection $\{\mathcal{E}_{\alpha}\}_{\mathbf{c}<\alpha\leqslant \mathbf{c}+\delta}$, with $\delta = \sum_{i\in S} \delta_{i}$. **[support]** $\Rightarrow \mathcal{E}_{\bullet}$ is effectively reconstructed by any truncation $_{\mathbf{c}}E$. In fact: the numerator of the lyer-Simpson formula is independent of the choice of truncation.

Parabolic objects

Parabolic Chern classes (ii)

Example: The first parabolic Chern class of **E**_• is given by:

Tony Pantev HMS and NAHT University of Pennsylvania

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Parabolic objects

Parabolic Chern classes (ii)

Example: The first parabolic Chern class of **E**. is given by:

$$\mathsf{parc}_1 = c_1(\mathsf{E}_{\mathsf{c}}) - \sum_{i \in S} \left(\sum_{a \in \mathsf{weights}(\mathsf{E}_{\mathsf{c}}, i)} a \operatorname{rank}^i \operatorname{gr}_a \mathsf{E}_{\mathsf{c}} \right) \cdot D_i$$

University of Pennsylvania

< □ > < A > >