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The partition function of the topological string is of interest both for physics
(effective Sugra actions, Nekrasov partition functions,...)
and mathematics

(enumerative invariants: Gromov- Witten, Donaldson-Thomas,
Gopakumar-Vafa,...)

There are various approaches to its computation
(Topological recursion, holomorphic anomaly, topological vertex,...)
Most of them are perturbative in one way or another, with some exceptions

(matriz model; cf. in particular Marino et. al.)



The problem

Let us consider CY of “class X", local CY of the form
ry — P(u,v) =0, with P(u,v) =v*— Qo(u),

where Qg is a quadratic differential on a Riemann surface C' = C, ,,, for g = 0:

- Oy E,
QO:Z((U_ZT)2+'UJ_ZT) .

r=1

CY of class X relevant for geometric engineering of
d =4, N =2 SUSY gauge theories of class S,

Seiberg-Witten curve: ¥ = {(u,v); P(u,v) =0} C T*C.

Problem: Define and compute topological string partition function Z,, for class X



Local mirror symmetry

A-model on X, B-model on local CY Y,

Kahler moduli t = t(m), cplx. structure moduli m

where complex structure moduli of Y: m = (E, d, z),
E:(El,EQ,...), d:(él,(sg,...), Z:(Zl,ZQ,...),

and Kahler moduli t: Periods of canonical one form vdu on X..

Regard Z;,, as function Z,  (t; \).



Predictions from string dualities

A chain of dualities was discussed by Dijkgraaf-Hollands-Sulkowski-Vafa relating:

i) Geometric (GW) — Type IIB string theory on TN x Y, where and T'N is the
Taub-NUT space and Y is the non-compact Calabi-Yau manifold zy—P(u,v) = 0.

i) D-branes (DT) — Type IIA string theory on R3 x S! x X, where X is the mirror
of the Calabi-Yau Y manifold in i) with a D6-brane wrapping S! x X.

iii) I-brane: Type IIA string background with a D4 and a D6 intersecting along 3.

It was argued that generating functions of BPS-states are related
ZGW ~ ZDT ~ ZI, where ZI = fo,

Zg: partition function of free fermions on X (massless open strings between D4, D6)
Topological string coupling A ~ B-field along D6 ~~

~+ non-commutative deformation of X, the “quantum curve”



More precisely, the prediction of Dijgraaf et. al. can be formulated as

Zg(&,t50) = ) P Zyop(t+ Ap, A).
peH2(X,7)

This could give us an elegant non-perturbative definition of Z;,(t, A) if we knew

a) exactly how to turn the curve ¥ into a “quantum curve”,
b) how to associate a free fermion partition function to a “quantum curve”,

c) the relation between the variables (£,t) and parameters of “quantum curve".

This has been illustrated by some examples in the work of Dijkgraaf et. al..



Our goal: Turn this into a general and non-perturbative mathematical definition
of the topological string partition functions for class ..

To explain the answer we need to address to following questions:
A) How to quantize X and turn it into a free fermion partition function?

— use meromorphic opers and theory of infinite Grassmannians / free fermions

B) How to parameterise quantum curves in terms of (£,t)?
— use Riemann-Hilbert correspondence and Abelianisation

C) Why is Abelianisation the right thing to use?
— exact WKDB gives a canonical way to “quantize” the leading order result



A) From quantum curve to free fermion partition functions |

Quantum curve ~ Differential equation quantising the equation for X:

v = Qo(u) =0 ~ | (A0 +Qu))x(u) =0, | Qu) =Qo(u) +O(N).

Corresponding D-module ~ flat connection having horizontal sections WV,

Vel (1) = [A@u + ((1) %2)] () = 0.

Fermionic state () defined as
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Note that {w;(x),l = 0,1,...} is a basis for the subspace Wy in the Sato-Segal-Wilson
Grassmannian associated to W.



A) From quantum curve to free fermion partition functions Il

Proposal: Free fermion partition function = tau-function (Sato-Jimbo-Miwa-Segal-Wilson)

Za(€,t:0) = (o, e"Mig(Q)).

where H(7) = > . H;7;, H;: generators of an abelian sub-algebra A of W,
Wiioeo: Lie algebra generated by fermion bilinears.

Nice,
(+) relation to integrable hierarchies
but so far pretty useless, in general*)

(=) don’t know which sub-algebra A is “suitable” for our problem

(=) don’t know relation between (£,t) and (7,Q)

*) Exceptions: Examples investigated by Dijkgraaf et. al.



A) How to quantize the spectral curve |

Quantum curve receives quantum corrections:

Qo(u) = Q(u) = Qo(u +>\Z

ey
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‘v + Qi =0, Qr = lim (Q(U) — A

Why?
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e Only now we have enough parameters in quantum curve (m,u,Vv),
u=(ug,...,Up_3), v=(v1,...,0,_3), to account for both £ and t.

e The extra singularities are more apparent than real, the D-module associated to

the quantum curve is non-singular at u = uy,

A0y, + (0 Q) gauge equivalent to A0, +

1 0

with A;; = A;;(u) non-singular at © = uy.
J J
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B) How to parameterise quantum curves in terms of (£,t)?

Main problem: Relation between (£,t) and parameters of quantum curve.

Our proposal:

(&,t) ~ very special coordinates for monodromy data

made precise through

e Riemann-Hilbert correspondence — correspondence between monodromies
(holonomies of flat connection) and D-modules (quantum curves),

and

e Abelianisation: Curve X — very special coordinates for monodromy data.



B) Abelianisation (Hollands-Neitzke)

Fenchel-Nielsen (FN) network (black) decomposes surface C' into annular regions A;.

e Connection can be diagonalised on each annular region A;. Parallel transport ~~
collection of diagonal matrices D;, D!, DY, eigenvalues: simple functions of e,
r=1,2,3,4, ¢, and diagonal matrix T, eigenvalue ¢'".

e Jump matrices J;, J;; (non-diagonal!) representing non-abelian parallel transport
across walls of FN network uniquely determined in terms of matrices D;, D}, D/
by consistency conditions.

Any closed path v on C' can be decomposed into segments contained in A; (blue),
segments crossing walls (green), and a path traversing annulus between the two pairs
of pants (grey) ~» holonomies parameterised in terms of o, 7, 0,., r = 1,2, 3, 4.



B) Our proposal, finally

To given t € R3973T™ (Kahler parameters), £ (twist parameters)

find mirror curve X, v? = Qo(u) and canonical basis for H;(X,7Z) such that
parameters t are the a-cycle periods of X

find Fenchel-Nielsen network defined by QQg(u) for real t

construct quantum curve Vy associated to (£,t) by Riemann-Hilbert, assuming

Dictionary: o =t /N\, i, =&, 07 =08,/)°

construct Zg(&,t; \) as SJMSW tau-function associated to Vs

expand in e$P, extract Ziop uUSINg

Za(€60) = ) P Zup(t+Ap,A)
pcH?2(X,Z)

Analytically continue in t



The proof for C' = C 4:

Calculation of both sides, comparison

Calculation of tau-functions: Can be done using either
e Tau-functions are generalised conformal blocks of free fermion VOA
(Moore; Palmer; J.T. '17)
e ~~ can be factorised by gluing construction (lorgov-Lisovyy-JT)
or, even better

e Factorisation of Riemann-Hilbert problems

e ~~ factorisation of tau-functions (Gavrylenko-Lisovyy, Cafasso-Gavrylenko-Lisovyy)

Either way ~~ explicit formulae (first conjectured by Gamayun-lorgov-Lisovyy)

T(or:0:2) =3 3 20, 200 =3 e G(o+n,0:2)

neZ &,(eY nez

where:



where G( o, 6 ; z ) can be factorised as
Q(a, Q; Z) — M(0794793)M(0792791)F(07 Q; Z)a

using the following notations:

e The functions N (603, 02, 01) are defined as

He::l: G(l + 93 + 6(92 + 91))G(1 —+ 93 —+ 6(92 — 61))

M (03,0, 61) =
(85, 62, 61) G(1 + 205)G(1 — 20,)G(1 — 20,) !

where G (p) is the Barnes G-function that satisfies G(p + 1) = I'(p) G(p).

e F(o, 0; z) can be represented by the following power series

2 _p2 p2
Flo,0;2) =27 17201 —2)"% %7 JHEF (0,0),
§,CeY

with Y set of partitions, coefficients F¢ (o, 8) explicitly given in

(02 +o+i—3)" = 07)((0s+ 0+ —j)" =06

0) =
Fecl(o,0) H & —i+&—g+1)*(&—t+G—7+1+20)°

(i) €
I (62 —0+i—35)°=60)((03 —0+i—75)°—6))
(¢ —i4+C—g+D—i+8&—7+1—20)%

(4,5)€¢

¢i / ¢, arm / leg length of (i,7) € Y.



The proof for C' = Cj 4, Il

Topological string partition function: Can be calculated using top. vertex

QB
—

le — Yl e Qm4

Qr

Qm2/_)- Y2 _)_\Qm3

Crucial is the precise formula for M (63, 02, 61):

Careful 4d limit ~ match!

e Only for very special choices of M (03, 605,601) one gets Fourier-series of the form

T(o,7;0; 2) := Z e G(o+n,8;2),

nez

Corollary: Quantitative check of string dualities!

e Only for very particular coordinate 7 one gets right formula for M (03,65, 6-).



C) Why abelianisation is the right thing to use

Key-word: Exact WKB:

e Foliations defined by () for real periods t decompose C' into annular regions.

e In each annular region there exist unique solutions of quantum curve equation
with diagonal monodromy and leading asymptotics

U = VA ex ’ U l U Q)
M) = o p<i/ u (V@) + 5 Qo(u)>>(1+0()\))’

defined through Borel-summation of A-expansion.

e Analytic continuation across walls represented by jump matrices used in
Abelianisation

e ~~ monodromy of Borel sums naturally parameterised by o, 7.



We have presented a proposal for a non-perturbative*) and computable definition
of the topological string partition functions for class ..

*) manifest in representation as a Fredholm determinant (Cafasso-Gavrylenko-Lisovyy)

Key elements of the proposal

A) How to quantize 3 and turn it into a free fermion partition function?
— use meromorphic opers and theory of inf. Grassmannians / free fermions

B) How to parameterise quantum curves in terms of ({,t)?
— use Riemann-Hilbert correspondence and Abelianisation

C) Why is Abelianisation the right thing to do?
— exact WKB gives a canonical way to “quantise” the leading order result



This problem has previously been approached (in simple cases) by other methods

e Integrable structures: (Aganagic-Dijkgraaf-Klemm-Marino-Vafa,. . . ,Okounkov)

Our work makes integrability effective in complicated cases.

e Topological recursion: So far unclear which exact initial conditions to put. Can
now be extracted from exact result (R. Belliard, J.T., in progress)

¢ Quantisation of H°(Y,R), holomorphic anomaly. The expansion

Zg(E ;) = ) €PEZgp(t+ Ap,A)
peH2(X,Z)

has an interpretation as a Fourier-transformation relating natural representations
for quantisation of H3(Y,R) (lorgov-lisovyy-J.T., and work in progress)

e Relation to Hitchin systems: (cf. Diaconescu, Dijkgraaf, Donagi, Hofman, Pantev)

e Matrix models: Relation between contours and choices of coordinates (o, 7)



e Toric CY: (Cf. Marino; Jimbo-Nagoya-Sakai)
e Higher genus, irregular singularities

e Higher rank (cf. Coman-Pomoni-J.T.17, and Hollands-Neizke (to appear))

Crucial is the interplay between two integrable structures in this context:
e Integrable flows on moduli spaces —

(integrable hierarches, Hitchin systems, isomonodromic deformations,....)

e Integrable structures on character varieties —
best expressed in terms of coordinates of Fenchel-Nielsen type.



