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Abstract. A twisted version of four dimensional supersymmetric gauge theory
is formulated. The model, which refines a nonrelativistic treatment by Atiyah,
appears to underlie many recent developments in topology of low dimensional
manifolds; the Donaldson polynomial invariants of four manifolds and the
Floer groups of three manifolds appear naturally. The model may also be
interesting from a physical viewpoint; it is in a sense a generally covariant
quantum field theory, albeit one in which general covariance is unbroken, there
are no gravitons, and the only excitations are topological.

1. Introduction

One of the dramatic developments in mathematics in recent years has been the
program initiated by Donaldson of studying the topology of low dimensional
manifolds via nonlinear classical field theory [1,2]. Donaldson's work uses
heavily the self-dual Yang-Mills equations, which were first introduced by
physicists [3], and depends on some important results originally obtained by
mathematical physicists, e.g. Taubes' theorem on existence of instantons on certain
smooth four manifolds [4] (as well as hard analysis of instanton moduli spaces
[5]). Thus there have been many conjectures that Donaldson's work may be
related to physical ideas in an intimate way. However, such a relation has not been
apparent in Donaldson's detailed constructions.

This picture has changed considerably because of the work of Floer on three
manifolds [6]. Floer's work involves tunneling amplitudes in 3 + 1 dimensions,
and has been interpreted by Atiyah [7] in terms of a modified version of
supersymmetric quantum gauge theory. (Floer theory has also been reviewed in
[8].) In this viewpoint, Floer theory can be seen as a generalization to infinite
dimensional function space of the supersymmetric approach to Morse theory [9].

* On leave from Department of Physics, Princeton University. Research supported in part by
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Abstract. A variant of the usual supersymmetric nonlinear sigma model is
described, governing maps from a Riemann surface Σ to an arbitrary almost
complex manifold M. It possesses a fermionic BRST like symmetry, conserved
for arbitrary Σ, and obeying Q2 = 0. In a suitable version, the quantum ground
states are the 1 +  1 dimensional Floer groups. The correlation functions of the
BRST invariant operators are invariants (depending only on the homotopy
type of the almost complex structure of M) similar to those that have entered
in recent work of G romov on symplectic geometry. The model can be coupled
to dynamical gravitational or gauge fields while preserving the fermionic
symmetry; some observations by Atiyah suggest that the latter coupling may
be related to the Jones polynomial of knot theory. F rom the point of view of
string theory, the main novelty of this type of sigma model is that the graviton
vertex operator is a BRST commutator. Thus, models of this type may
correspond to a realization at the level of string theory of an unbroken phase
of quantum gravity.

1. Introduction

In recent years, Yang Mills instantons have played an important role in the study
of four manifolds and three manifolds in the work of D onaldson [1] and Floer
[2], respectively. More recently, Atiyah advocated an interpretation of F loer theory
in terms of a non relativistic version of supersymmetric quantum Yang Mills
theory [3] and offered some evidence that this might have a relativistic generaliz 
ation that would account for many features of D onaldson and Floer theory. A
relativistic quantum field theory that seems to have the requisite properties was
indeed formulated in [4]. It possesses a global fermionic symmetry which is similar
in many ways to BRST symmetry, though it can be obtained by twisting ordinary
N = 2 supersymmetric Yang Mills theory.

There is also a 1 +  1 dimensional version of Floer theory [2], which has given
striking results about symplectic diffeomorphisms of symplectic manifolds. F rom

* On leave from D epartment of Physics, Princeton University. Supported in part by N SF G rants
N o. 80 19754, 86 16129, 86 20266
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Abstract. It is shown that 2 + 1 dimensional quantum Yang-Mills theory, with
an action consisting purely of the Chern-Simons term, is exactly soluble and
gives a natural framework for understanding the Jones polynomial of knot
theory in three dimensional terms. In this version, the Jones polynomial can be
generalized from S3 to arbitrary three manifolds, giving invariants of three
manifolds that are computable from a surgery presentation. These results shed
a surprising new light on conformal field theory in 1 -f-1 dimensions.

In a lecture at the Hermann Weyl Symposium last year [1], Michael Atiyah
proposed two problems for quantum field theorists. The first problem was to give
a physical interpretation to Donaldson theory. The second problem was to find an
intrinsically three dimensional definition of the Jones polynomial of knot theory.
These two problems might roughly be described as follows.

Donaldson theory is a key to understanding geometry in four dimensions.
Four is the physical dimension at least macroscopically, so one may take a slight
liberty and say that Donaldson theory is a key to understanding the geometry of
space-time. Geometers have long known that (via de Rham theory) the self-dual
and anti-self-dual Maxwell equations are related to natural topological invariants
of a four manifold, namely the second homology group and its intersection form.
For a simply connected four manifold, these are essentially the only classical
invariants, but they leave many basic questions out of reach. Donaldson's great
insight [2] was to realize that moduli spaces of solutions of the self-dual Yang-
Mills equations can be powerful tools for addressing these questions.

Donaldson theory has always been an intrinsically four dimensional theory,
and it has always been clear that it was connected with mathematical physics at
least at the level of classical nonlinear equations. The puzzle about Donaldson
theory was whether this theory was tied to more central ideas in physics, whether it
could be interpreted in terms of quantum field theory. The most important

* An expanded version of a lecture at the IAMP Congress, Swansea, July,
** Research supported in part by NSF Grant No. 86-20266, and NSF Waterman Grant 88-17521
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1. Introduction 

The aim of this paper is to construct new topological invariants of compact 
oriented 3-manifolds and of framed links in such manifolds. Our invariant of 
(a link in) a closed oriented 3-manifold is a sequence of complex numbers para- 
metrized by complex roots of 1. For  a framed link in S 3 the terms of the sequence 
are equale to the values of the (suitably parametrized) Jones polynomial of 
the link in the corresponding roots of 1. Thus, for links in S 3 our invariants 
are essentially equivalent to the Jones polynomial [Jo]. 

Note  that in general we do not know if our invariant of (a framed link 
in) a closed oriented 3-manifold may be described as the sequence of values 
of a certain polynomial in the roots of unity. 

In the case of manifolds with boundary our invariant is a (sequence of) 
finite dimensional complex linear operators. This produces from each root  of 
unity q a 3-dimensional topological quantum field theory (see [A1]). In particu- 
lar, for each q we associate with every closed oriented surface a finite dimensional 
complex linear space. We construct a projective action of the modular group 
of the surface in this space. 

Our constructions have been partially inspired by the ideas of E. Witten 
[Wi] who considered quantum field theory defined by the nonabelian Chern- 
Simons action and applied it to study the topology of 3-manifolds. Using this 
quantum field theory, Witten has defined (on the physical level of rigor) certain 
invariants of 3-manifolds and links in 3-manifolds. The constructions of Witten 
strongly suggested that there may exist a parallel mathematical theory. We 
believe that our invariants may be viewed as a mathematical realization of 
the Witten's program. 

We use a rather down-to-earth approach to construct our  invariants. Name- 
ly, we use surgery to reduce the general case to the case of links in S 3 and 
then apply the classical Jones polynomial and some derived invariants of links 
in S 3. The reduction of the topology of 3-manifolds to the theory of links in 
S 3 is very well known. Indeed, each framed link L in S 3 determines a closed, 
oriented, connected 3-manifold ML obtained by surgering S 3 along L. Each 
closed, oriented, connected 3-manifold M is known to be homeomorphic  to 
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from Quantum Groups
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Abstract. The generalization of Jones polynomial of links to the case of graphs
in R3 is presented. It is constructed as the functor from the category of graphs to
the category of representations of the quantum group.

1. Introduction
The present paper is intended to generalize the Jones polynomial of links and the
related Jones-Conway and Kauffman polynomials to the case of graphs in R3.

Originally the Jones polynomial was defined for links of circles in R3 via an
astonishing use of von Neumann algebras (see [Jo]). Later on it was understood
that this and related polynomials may be constructed using the quantum
K-matrices (see, for instance, [TuJ). This approach enables one to construct
similar invariants for coloured links, i.e. links each of whose components is
provided with a module over a fixed algebra (see [ReJ, where the role of the
algebra is played by the quantized universal enveloping algebra Uq(G) of a
semisimple Lie algebra G).

The Jones polynomial has been also generalized in another direction: in
generalization of links of circles one considers the so-called tangles which are links
of circles and segments in the 3-ball, where it is assumed that ends of segments lie
on the boundary of the ball. Technically it is convenient to replace the ball by the
strip R2 x [0,1], which enables one to distinguish the top and bottom endpoints of
the tangle. The corresponding "Jones polynomial" of a coloured tanlge is a linear
operator V1®...®Vk-^V1®...®V€ where Vί,...,Vk (respectively Vι®...®V*)
are the modules associated with the segments incident to bottom (respectively top)
endpoints of the tangle. Here the language of categories turns out to be very
fruitful. The tangles considered up to isotopy are treated as morphisms of the
"category of tangles." The generalized Jones polynomial is a covariant functor
from this category to the category of modules (see [Tu2, Re2])

Definitions of Jones type polynomials for embedded graphs in R3 have been
given by several authors [KV, Ye] but the subject still remains open. It was clear
from the very beginning that the graph should be provided with thickening, i.e.
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Extended Locality

GG(Y ) is a finite path integral. . . of the constant function C:
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Extend to lower dimensions: BunG(S
1) ' G//G

GG(S
1)“ = ”

Z

BunG(Y )
Vect
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Puzzle Solution

Cocycle for level � 2 H4(BG;Z) . . . finite Chern-Simons theory

GG(X) =
X

[P ]2⇡0 BunG(X)

�(P )

#AutP

GG(Y ) = �(L ! BunG(Y ))

GG(S
1) = Vect�G(G)

GG(S
1): modular ⌦cat = module category for quasi-Hopf algebra

Solution: classical Chern-Simons
quantize on S1

����������! Hopf algebra
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Quantum Field Theory and the Jones Polynomial
Edward Witten **
School of Natural Sciences, Institute for Advanced Study, Olden Lane, Princeton,
NJ 08540, USA

Abstract. It is shown that 2 + 1 dimensional quantum Yang-Mills theory, with
an action consisting purely of the Chern-Simons term, is exactly soluble and
gives a natural framework for understanding the Jones polynomial of knot
theory in three dimensional terms. In this version, the Jones polynomial can be
generalized from S3 to arbitrary three manifolds, giving invariants of three
manifolds that are computable from a surgery presentation. These results shed
a surprising new light on conformal field theory in 1 -f-1 dimensions.

In a lecture at the Hermann Weyl Symposium last year [1], Michael Atiyah
proposed two problems for quantum field theorists. The first problem was to give
a physical interpretation to Donaldson theory. The second problem was to find an
intrinsically three dimensional definition of the Jones polynomial of knot theory.
These two problems might roughly be described as follows.

Donaldson theory is a key to understanding geometry in four dimensions.
Four is the physical dimension at least macroscopically, so one may take a slight
liberty and say that Donaldson theory is a key to understanding the geometry of
space-time. Geometers have long known that (via de Rham theory) the self-dual
and anti-self-dual Maxwell equations are related to natural topological invariants
of a four manifold, namely the second homology group and its intersection form.
For a simply connected four manifold, these are essentially the only classical
invariants, but they leave many basic questions out of reach. Donaldson's great
insight [2] was to realize that moduli spaces of solutions of the self-dual Yang-
Mills equations can be powerful tools for addressing these questions.

Donaldson theory has always been an intrinsically four dimensional theory,
and it has always been clear that it was connected with mathematical physics at
least at the level of classical nonlinear equations. The puzzle about Donaldson
theory was whether this theory was tied to more central ideas in physics, whether it
could be interpreted in terms of quantum field theory. The most important

* An expanded version of a lecture at the IAMP Congress, Swansea, July,
** Research supported in part by NSF Grant No. 86-20266, and NSF Waterman Grant 88-17521

Invent. math. 103, 547-597 (1991) /rivet/ /oiv/e$ 
mathematicae 
 9 Springer-Verlag 1991 

Invariants of 3-manifolds via link polynomials 
and quantum groups 
N .  Reshe t ikh in  1 and V .G.  Turaev  2 
1 Department of Mathematics, Harvard University, Cambridge, MA 02138, USA 
2 LOMI, Fontanka 27, Leningrad 191011, USSR 

Oblatum 20-XII-1989 & 7-VII-1990 

1. Introduction 

The aim of this paper is to construct new topological invariants of compact 
oriented 3-manifolds and of framed links in such manifolds. Our invariant of 
(a link in) a closed oriented 3-manifold is a sequence of complex numbers para- 
metrized by complex roots of 1. For  a framed link in S 3 the terms of the sequence 
are equale to the values of the (suitably parametrized) Jones polynomial of 
the link in the corresponding roots of 1. Thus, for links in S 3 our invariants 
are essentially equivalent to the Jones polynomial [Jo]. 

Note  that in general we do not know if our invariant of (a framed link 
in) a closed oriented 3-manifold may be described as the sequence of values 
of a certain polynomial in the roots of unity. 

In the case of manifolds with boundary our invariant is a (sequence of) 
finite dimensional complex linear operators. This produces from each root  of 
unity q a 3-dimensional topological quantum field theory (see [A1]). In particu- 
lar, for each q we associate with every closed oriented surface a finite dimensional 
complex linear space. We construct a projective action of the modular group 
of the surface in this space. 

Our constructions have been partially inspired by the ideas of E. Witten 
[Wi] who considered quantum field theory defined by the nonabelian Chern- 
Simons action and applied it to study the topology of 3-manifolds. Using this 
quantum field theory, Witten has defined (on the physical level of rigor) certain 
invariants of 3-manifolds and links in 3-manifolds. The constructions of Witten 
strongly suggested that there may exist a parallel mathematical theory. We 
believe that our invariants may be viewed as a mathematical realization of 
the Witten's program. 

We use a rather down-to-earth approach to construct our  invariants. Name- 
ly, we use surgery to reduce the general case to the case of links in S 3 and 
then apply the classical Jones polynomial and some derived invariants of links 
in S 3. The reduction of the topology of 3-manifolds to the theory of links in 
S 3 is very well known. Indeed, each framed link L in S 3 determines a closed, 
oriented, connected 3-manifold ML obtained by surgering S 3 along L. Each 
closed, oriented, connected 3-manifold M is known to be homeomorphic  to 



Line operators

Extended field theory encodes extended operators (Kapustin)

S ⊂ X coframed 1d submanifold of X3 closed

Link S1 used to label S by objects of GG(S1) = VectG(G)

Wilson loops: Rep(G) ≈ full subcategory of VectG(G) with support
at e ∈ G. Classical expression using holonomy with character χ:

GG
(
X; (S, χ)W

)
=

∑
[P ]∈π0 BunG(X)

hS,χ(P )

# AutP
.

’t Hooft loops: Full subcategory of VectG(G) in which centralizers Zx
act trivially on fiber at x ∈ G. Classical model sums bundles on X \ S
with specified holonomy about S.
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GG : Bordh1,2,3i �! Cat

If @X 6= ; there are line operators for neat 1d submanifolds S ⇢ X.
Evaluate by cutting out tubular neighborhood ⌫S .

S1 q S1

Y 0

''

@0⌫S

77

↵◆

X0 ;1
X 0 = X \ ⌫S
Y 0 = X 0 \ @X

Can evaluate explicitly on Wilson (parallel transport) and ’t Hooft
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Full Locality

GG : Bordh0,1,2,3i �! ???

Open Question: Suitable codomain for general extended field theory?

Finite gauge theory: TensCat (complex linear tensor categories)

GG : Bord
3

�! TensCat

Quantize (finite path integral) BunG(pt) ' pt //G to compute

GG(pt) = Vect[G]
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Full Locality

GG : Bord〈0,1,2,3〉 −→ ???

Open Question: Suitable codomain for general extended field theory?

Finite gauge theory: TensCat (complex linear tensor categories)

GG : Bord3 −→ TensCat

General theory: Etingof-Gelaki-Nikshych-Ostrik
3-categorical aspects: Douglas-{Schommer-Pries}-Snyder
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Cobordism Hypothesis: Evaluation on a point is an equivalence

TFT(C) �!
h
(Cfd)⇠

iO3

F 7�! F (pt)

Baez-Dolan conjecture, Hopkins-Lurie in 2d, Lurie in general

Warning: Need O
3

-invariance data for unoriented theories

Construct a theory RG : Bord
3

! TensCat with

RG(pt) = Rep(G)

No classical model in general, Turaev-Viro state sum

A finite abelian: Rep(A) ' Vect[A_] =) RG ' GA_



Cobordism Hypothesis: Evaluation on a point is an equivalence

TFT(C) −→
[
(Cfd)∼

]O3

F 7−→ F (pt)

Baez-Dolan conjecture, Hopkins-Lurie in 2d, Lurie in general

Warning: Need O3-invariance data for unoriented theories

Construct a theory RG : Bord3 → TensCat with

RG(pt) = Rep(G)

No classical model in general, Turaev-Viro state sum

A finite abelian: Rep(A) ' Vect[A∨] =⇒ RG ' GA∨
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(Nonabelian) Electromagnetic Duality

Theorem: There is a Morita equivalence Vect[G] ' Rep(G), and iso

F : GG
⇠
=��! RG

of field theories of oriented manifolds

F : FA

⇠
=��! FA_ is Fourier transform on states for Y 2 closed oriented:

F : Fun
�
H1(Y ;A)

� ⇠
=��! Fun

�
H1(Y ;A_)

�

Line operators: GA(S
1) = VectA(A) ⇡ Vect(A⇥A_) duality A ! A_
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Extended field theory ideas appear in many places in geometry,
topology, and quantum field theory

Now onto a new application to lattice models (w/Constantin Teleman)



Latticed 1- and 2-manifolds

Definition:

(i) A latticed 1-manifold (S,⇧) is a closed 1-manifold S equipped with
a finite subset; ⇧ ⇢ S is an embedded graph, each component of
which is a polygon with � 2 sides.

(ii) A latticed 2-manifold (Y,⇤) is a compact 2-manifold Y equipped
with a smoothly embedded finite graph ⇤ ⇢ Y such that the
closure of each face (component of Y \ ⇤) is a smoothly embedded
solid n-gon with n � 2. Furthermore, if e is an edge of ⇤, then
either (a) e \ @Y = ;, (b) e \ @Y is a single boundary vertex of e,
or (c) e ⇢ @Y .

• No choice of embedding of n-gons

• Loops are disallowed by the conditions

• Faces may share multiple edges
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Ising model

A = /µ
2
= {±1} abelian group of “spins”

� 2 R>0 inverse temperature

✓� : A �! R�0

±1 7�! e±� weight function

AVert(⇤) = Map
�
Vert(⇤), A

�
configuration space of spins

g : AVert(⇤) ⇥ Edge(⇤) ! A ratio of boundary spins

Y closed:
I(Y,⇤) =

X

s2AVert(⇤)

Y

e2Edge(⇤)

✓�
�
g(s; e)

�

This is the Ising partition function. Note limits � ! 1, � ! 0.
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Ising model

A = /µ
2

= {±1} abelian group of “spins”

β ∈ R>0 inverse temperature

θβ : A −→ R≥0

±1 7−→ e±β
weight function

AVert(Λ) = Map
(
Vert(Λ), A

)
configuration space of spins

g : AVert(Λ) × Edge(Λ)→ A ratio of boundary spins

The model can be defined for more general data:

G finite group

θ : G −→ R≥0 admissible function



Ising model

A = /µ
2

= {±1} abelian group of “spins”

β ∈ R>0 inverse temperature

θβ : A −→ R≥0

±1 7−→ e±β
weight function

AVert(Λ) = Map
(
Vert(Λ), A

)
configuration space of spins

g : AVert(Λ) × Edge(Λ)→ A ratio of boundary spins

Definition: Let G be a finite group. A function θ : G→ R is admissible
if (i) θ(g) ≥ 0 for all g ∈ G; (ii) θ(g−1) = θ(g) for all g ∈ G; and
(iii) θ∨(ρ) is a nonnegative operator for each irreducible unitary
representation ρ : G→ Aut(W ).



Ising model

A = /µ
2
= {±1} abelian group of “spins”

� 2 R>0 inverse temperature

✓� : A �! R�0

±1 7�! e±� weight function

AVert(⇤) = Map
�
Vert(⇤), A

�
configuration space of spins

g : AVert(⇤) ⇥ Edge(⇤) ! A ratio of boundary spins

The group G acts by constant translation on AVert(⇤)

sh(v) = hs(v), s 2 AVert(⇤), h 2 G, v 2 Vert(⇤)

preserving the function g, so as a symmetry of the Ising model



Probabilistic interpretation:

δs =

∏
e∈Edge(Λ)

θβ
(
g(s; e)

)
I(Y,Λ)

is a probability measure on AVert(Λ)

β → 0 uniform measure paramagnetic

β →∞ support at 2 points ferromagnetic

Expectation value of a function

f : AVert(Λ) −→ C

such as f(s) = s(v1)s(v2) for vertices v1, v2 (order operator):

〈f〉 =
∑

s∈AVert(Λ)

f(s)δs
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Quantum mechanical interpretation (Wick-rotated time):

Construct a functor

I : Bordlatticedh1,2i �! VectC

Objects: closed latticed 1-manifold (S,⇧) maps to the vector space

I(S,⇧) = Fun(AVert (⇧)) = Map(AVert (⇧),C)
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Morphisms: 2d latticed bordism (Y,⇤) : (S0,⇧0) ! (S1,⇧1) gives a
correspondence diagram of spin configuration spaces

AVert(⇤)

r0

xx

r1

&&

AVert(⇧0) AVert(⇧1)

Define the linear map by push-pull

I(Y,⇤) = (r1)⇤ �K � (r0)⇤ : I(S0,⇧0) �! I(S1,⇧1)

where the “kernel” K is the weight function

K(s) =
Y

e

✓�
�
g(s; e)

�
, e incoming or interior
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Morphisms: 2d latticed bordism (Y,Λ): (S0,Π0)→ (S1,Π1) gives a
correspondence diagram of spin configuration spaces

AVert(Λ)

r0

xx

r1

&&
AVert(Π0) AVert(Π1)

Define the linear map by push-pull

I(Y,Λ) = (r1)∗ ◦K ◦ (r0)∗ : I(S0,Π0) −→ I(S1,Π1)

where the “integral kernel” K is the weight function

K(s) =
∏
e

θβ
(
g(s; e)

)
, e incoming or interior



Wick-rotated discrete time evolution via product bordism (“prism”)

(Y,⇤) = [0, 1]⇥ (S,⇧)

The resulting endomorphism of I(S,⇧) is called the transfer matrix. We
write it as e�H , where H is the Hamiltonian. Eigenvalues of H are
energies (possibly infinite).
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Fourier-Kramers-Wannier Duality

(Y,⇤) closed latticed surface

C0(⇤;A) = AVert(⇤)

C1(⇤;A) = AEdge(⇤)

C0(⇤;A)
���! C1(⇤;A)

s 7�!
�
e 7! g(s; e)

�

Two functions on C1(⇤;A): ⇥ =
Y

e2Edge(⇤)

✓

�⇤1 = #H0(⇤;A)�B1(⇤;A)

Ising partition function:

I(Y,⇤) =
X

s2AVert(⇤)

Y

e2Edge(⇤)

✓�
�
g(s; e)

�
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Fourier-Kramers-Wannier Duality

(Y,⇤) closed latticed surface

C0(⇤;A) = AVert(⇤)

C1(⇤;A) = AEdge(⇤)

C0(⇤;A)
���! C1(⇤;A)

s 7�!
�
e 7! g(s; e)

�

Two functions on C1(⇤;A): ⇥ =
Y

e2Edge(⇤)

✓

�⇤1 = #H0(⇤;A)�B1(⇤;A)

Ising partition function as inner product of functions on C1(⇤;A):

I(Y,⇤) =
1

#H0(⇤;A)
h⇥, �⇤1i = c h⇥,�B1i



Pontrjagin dual groups and maps:

C0(⇤;A) �
// C1(⇤;A)

C0(⇤;A_) C1(⇤;A_)@
oo

Parsevel’s formula (Fourier transform f 7! f_ is an L2-isometry):

I(Y,⇤) = c h⇥,�B1i = c0 h⇥_,�_
B1i

Rewrite in terms of the dual triangulation (Y oriented) (Y,⇤_) as an
inner product of functions in C1(⇤_;A_); then

⇥_ =
Y

e_2Edge(⇤_)

✓_

�_
B1(⇤;A) = c00�Z1(⇤_;A_)

For A = /µ
2
, Fourier transform: � $ �_ where sinh(2�) sinh(2�_) = 1
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Features/Problems

1 Kramers-Wannier duality for G = A abelian relates theories I(A,✓)

and I(A_,✓_), but o↵ by homology groups

2 Need to see how order operators map under duality; usual story
with disorder operators not cleanly matching

3 Missing dual for G nonabelian

4 Mismatch in low energy states under duality

Key Idea: Use the full strength of the symmetry group G

Settles these issues and much more:

• prediction for low energy behavior (all G)

• more general classes of models

• whole story in context of extended topological field theory

• higher dimensional abelian models (stable homotopy theory)
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Fibering over BG

If a group G acts as a symmetry on mathematical object M (condition),
we can try to extend (data) to a fibering

M �
�

//

✏✏

M

✏✏
pt �
�

// BG

The precise nature of BG and ‘fibering’ vary

In geometry/topology M is the Borel quotient

In general there may be obstructions (“anomalies”) which are important
features of the symmetry; in any case M yields a richer picture

Equivariance �! Families
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‘Fibering over BG’ in Ising Model

G-Ising model on Y 2: background lattice Λ ⊂ Y and G-bundle Q→ Y
fluctuating field a “discrete gauged σ-model”

QVert(Λ) = sections of Q→ Y over Vert(Λ)

The ratio of spins defined via parallel transport

g : QVert(Λ) × Edge(Λ) −→ G

The partition function of I = I(G,θ) is now a function of a G-bundle:

I(Y,Λ): BunG(Y ) −→ C

The old partition function is the value at the trivial bundle
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To a latticed 1-manifold (S,Π) we obtain a vector bundle

I(S,Π) −→ BunG(S)

These are “twisted sectors”; the old state space is the fiber at pt ∈ BG

Upshot: I is a boundary theory for GG:

I(Y,Λ) ∈ GG(Y )

I(S,Π) ∈ GG(S)
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We learned recently that we were anticipated by Pavol Ševera (2002) in
some of our pictures of the Ising model and topological field theory,
though he works in a non-extended context: arXiv:hep-th/0206162



Boundary theories

Definition: A topological boundary theory for GG : Bord3 → TensCat is

B : 1 −→ τ≤2GG,

a map of functors Bord2 → TensCat

Cobordism hypothesis: B determined by B(pt), a left Vect[G]-module

Ising is a boundary theory on latticed manifolds (finite path integral)

Bordlatticed
〈1,2〉

//

1

((
Bord〈1,2〉 // Bord〈1,2,3〉

GG

// Cat

For (Y,Λ) closed obtain a function on BunG(Y ):

I(Y,Λ)[Q] =
∑

s∈QVert(Λ)

∏
e∈Edge(Λ)

θ
(
g(s; e)

)
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Line operators for neat 1d submanifolds S ⊂ X3 with ∂S ⊂ (∂X,Γ)

Wilson/order operators: χ : G→ T character, S ends at vertices

(F, I)(X,Γ) =
∑

[P ]∈π0 BunG(X)

1
# AutP

∑
s∈S(∂X,Γ)[∂P ]

hS,χ(P, s)
∏

e∈Edges(Γ)

θ
(
g(s; e)

)
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Line operators for neat 1d submanifolds S ⊂ X3 with ∂S ⊂ (∂X,Γ)

Wilson/order operators: χ : G→ T character, S ends at vertices

’t Hooft/disorder operators: conjugacy class in G, S ends in faces
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Revisit problems

1 Kramers-Wannier duality for G = A abelian relates theories I(A,θ)

and I(A∨,θ∨), but off by a sum over homology
X Kramers-Wannier duality is part of electromagnetic duality

2 Need to see how order operators map under duality; usual story
with disorder operators not cleanly matching
X Order/Disorder special case of Wilson/’t Hooft

3 Missing dual for G nonabelian
X Can construct using Turaev-Viro for F̂G

4 Mismatch in low energy states under duality
Discuss next

• prediction for low energy behavior (discuss next)

• more general classes of models

• whole story in context of extended topological field theory

• higher dimensional abelian models (stable homotopy theory)
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Low energy behavior; phase diagram

M moduli space of quantum theories

∆ ⊂M locus of phase transitions

(M\∆)gapped ⊂M\∆ systems with spectral gap

π0(M\∆)gapped set of phases

• Points in (M\∆)gapped have a low energy effective topological ∗ field
theory, thought to be a complete invariant of its path component

• Renormalization group flow on (M\∆)gapped

In our case take
MG = {admissible θ}/rescaling
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Apply full force of G-symmetry: low energy effective field theory is
a topological boundary theory for GG

Theorem [EGNO]: Irreducible Vect[G]-modules are parametrized by
central extensions 1 −→ T −→ H̃ −→ H −→ 1 of subgroups H ⊂ G

Classical model: boundary field a section of associated G/H-bundle

Prediction: No central extensions; irreducible modules
=⇒ Phases classified by symmetry breaking (Landau)

Uses twisted sectors—low energy states form a vector bundle

W −→ G//G

paramagnetic (β → 0) ferromagnetic (β →∞)
EM duality
(G = /µ
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Topological construction; general theories

Two canonical topological boundary theories: Dirichlet and Neumann

Dirichlet: subgroup e ⊂ G, so trivialization of G-bundle on boundary
module is Vect(G) (regular boundary theory)

Neumann: subgroup G ⊂ G, so no new boundary field
module is Vect (fiber functor for Vect[G])

Quartet of data:

T = Vect[G] categorified group algebra

B1 = Vect(G) Neumann boundary theory

B2 = Vect Dirichlet boundary theory

δ generator of HomT(B1,B2)
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Quartet: 3d TFT GG, boundary theories B1, B2, and domain wall D

Replace lattice Λ by a coloring via Morse function with critical points:

index 0 vertices

index 1 edges

index 2 faces

Use TFT to construct Ising state space, loop operators, etc.

Ising entirely in world of extended TFT—cobordism hypothesis applies

More general theories: spherical fusion category and fiber functor
= Frobenius-Hopf algebra
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Morita equivalence:

Vect[G]←→ Rep(G) (tensor categories)

Vect(G/H)←→ Rep(H) (left modules)

Exchanges theories specified by quartets Dirichelet ←→ Neumann:

(Vect[G],Vect[G],Vect,Vect)←→ (Rep(G),Vect,Rep(G),Vect)

Cobordism hypothesis =⇒ Electromagnetic/Kramers-Wannier duality

Theorem: On oriented manifolds there is an equivalence of G-gauge
theory and the Turaev-Viro Rep(G) theory which exchanges their
lattice boundary theories, and exchanges Wilson/Order and
’t Hooft/Disorder operators.
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Abelian duality in higher dimensions

S pointed space, finite homotopy type

FX Map(X+, S)

n-dimensional theory FS (finite path integral) with partition function

FS(X) =
∑

[ϕ]∈π0FX

1

#π1(FX , ϕ)

#π2(FX , ϕ)

#π3(FX , ϕ)
· · ·

Canonical Dirichlet and Neumann boundary theories

If S is an ∞ loop space, the 0-space of a spectrum T, then there is a
(Pontrjagin) dual spectrum T∨. Electromagnetic duality:

FT ≈ FΣn−1T∨

The abelian Ising story is n = 3 and T = ΣHA.
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