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Abstract. A twisted version of four dimensional supersymmetric gauge theory
is formulated. The model, which refines a nonrelativistic treatment by Atiyah,
appears to underlie many recent developments in topology of low dimensional
manifolds; the Donaldson polynomial invariants of four manifolds and the
Floer groups of three manifolds appear naturally. The model may also be
interesting from a physical viewpoint; it is in a sense a generally covariant
quantum field theory, albeit one in which general covariance is unbroken, there
are no gravitons, and the only excitations are topological.

1. Introduction

One of the dramatic developments in mathematics in recent years has been the
program initiated by Donaldson of studying the topology of low dimensional

manifolds via nonlinear classical field theory [1,2]. Donaldson’s work uses
heavily thae calf_diial Vana Mille annatinne whirh wara firet intradncad hyu
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Abstract. A variant of the usual supersymmetric nonlinear sigma model is
described, governing maps from a Riemann surface X to an arbitrary almost
complex manifold M. It possesses a fermionic BRST-like symmetry, conserved
for arbitrary X, and obeying Q* = 0. In a suitable version, the quantum ground
states are the 1 + 1 dimensional Floer groups. The correlation functions of the
BRST-invariant operators are invariants (depending only on the homotopy
type of the almost complex structure of M) similar to those that have entered
in recent work of Gromov on symplectic geometry. The model can be coupled
to dynamical gravitational or gauge fields while preserving the fermionic
symmetry; some observations by Atiyah suggest that the latter coupling may
be related to the Jones polynomial of knot theory. From the point of view of
string theory, the main novelty of this type of sigma model is that the graviton
vertex operator is a BRST commutator. Thus, models of this type may
correspond to a realization at the level of string theory of an unbroken phase
of quantum gravity.

1. Introduction

In recent years, Yang—Mills instantons have played an important role in the study
of four manifolds and three manifolds in the work of Donaldson [1} and Floer
[2], respectively. More recently, Atiyah advocated an interpretation of Floer theory
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ABSTRACT

A version of conformal gravity is formulated with a local fermionic symmetry
that is reminiscent of BRST invariance. It may have mathematical applications

(gravitational counterpart of Donaldson theory) or physical ones (unbroken phase

of general relativity).
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Quantum Field Theory and the Jones Polynomial *

Edward Witten **
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Abstract. It is shown that 2 + 1 dimensional quantum Yang-Mills theory, with
an action consisting purely of the Chern-Simons term, is exactly soluble and
gives a natural framework for understanding the Jones polynomial of knot
theory in three dimensional terms. In this version, the Jones polynomial can be
generalized from S°? to arbitrary three manifolds, giving invariants of three
manifolds that are computable from a surgery presentation. These results shed
a surprising new light on conformal field theory in 1 + 1 dimensions.

In a lecture at the Hermann Weyl Symposium last year [1], Michael Atiyah
proposed two problems for quantum field theorists. The first problem was to give
a physical interpretation to Donaldson theory. The second problem was to find an
intrinsically three dimensional definition of the Jones polynomial of knot theory.
These two problems might roughly be described as follows.

Donaldson theory is a key to understanding geometry in four dimensions.
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Characteristic forms and
geometric invariants

By SHIING-SHEN CHERN AND JAMES SIMONS*

1. Introduction

This work, originally announced in [4], grew out of an attempt to
derive a purely combinatorial formula for the first Pontrjagin number of a
4-manifold. The hope was that by integrating the characteristic curvature
form (with respect to some Riemannian metric) simplex by simplex, and
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Ribbon Graphs and Their Invariants Derived
from Quantum Groups

N. Yu. Reshetikhin and V. G. Turaev
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Abstract. The generalization of Jones polynomial of links to the case of graphs
in R3 is presented. It is constructed as the functor from the category of graphs to
the category of representations of the quantum group.

1. Introduction

The present paper is intended to generalize the Jones polynomial of links and the
related Jones-Conway and Kauffman polynomials to the case of graphs in R>.

Originally the Jones polynomial was defined for links of circles in R® via an
astonishing use of von Neumann algebras (see [Jo]). Later on it was understood
that this and related polynomials may be constructed using the quantum
R-matrices (see, for instance, [Tu,]). This approach enables one to construct
similar invariants for coloured links, ie. links each of whose components is
provided with a module over a fixed algebra (see [Re,], where the role of the
algebra is played by the quantized universal enveloping algebra U,(G) of a
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Invariants of 3-manifolds via link polynomials
and quantum groups

N. Reshetikhin! and V.G. Turaev >

! Department of Mathematics, Harvard University, Cambridge, MA 02138, USA
2 LOMI, Fontanka 27, Leningrad 191011, USSR

Oblatum 20-XT11-1989 & 7-VII-1990

1. Introduction

The aim of this paper is to construct new topological invariants of compact
oriented 3-manifolds and of framed links in such manifolds. Our invariant of
(a link in) a closed oriented 3-manifold is a sequence of complex numbers para-
metrized by complex roots of 1. For a framed link in S the terms of the sequence
are eauale to the values of the (suitablv parametrized) Jones polvnomial of
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TOPOLOGICAL QUANTUM FIELD THEORIES
by Micuaer ATIYAH

o René Thom on his 65th birthday.

1. Introduction

In recent years there has been a remarkable renaissance in the relation be
Geometry and Physics. This relation involves the most advanced and sophisticated
ideas on each side and appears to be extremely deep. The traditional links between
the two subjects, as embodied for example in Einstein’s Theory of General Relativity
or in Maxwell’s Equations for Electro-Magnetism are concerned essentially with classical
fields of force, governed by differential equations, and their geometrical interpretation.
The new feature of present developments is that links are being established between
quantum physics and fopology. It is no longer the purely local aspects that are involved
but their global counterparts. In a very general sense this should not be too surprising.
Both quantum theory and topology are characterized by discrete phenomena emerging
from a continuous background. However, the realization that this vague philosophical
view-point could be translated into reasonably precise and significant mathematical
statements is mainly due to the efforts of Edward Witten who, in a variety of directions,
has shown the insight that can be derived by examining the topological aspects of quantum
field theories.

The hect ctartineg nnint e indanhtedly Wittan’e nanar {111 whera ha synlained

It will be clear how much this whole subject rests on the ideas of Witten. In
formulating the axiomatic framework in §2, I have also been following Graeme Segal
who produced a very similar approach to al field\theories [10]. Finally it seems

We come now to the promised axioms. A topological quantum field theory (QFT),
in dimension d defined over a ground ring A, consists of the following data:

(A) A finitely generated A-module Z(Z) associated to each oriented closed smooth
d-dimensional manifold X,

(B) An element Z(M) e Z(9M) associated to each oriented smooth (d 4 1)-dimensional
manifold (with boundary) M.

These data are subject to the following axioms, which we state briefly and expand upon
below:

(1) Z is functorial with respect to orientation preserving diffeomorphisms of £ and M,

(2) Z is involutory, i.e. Z(Z*) = Z(Z)* where Z* is T with opposite orientation and Z(Z)*
denotes the dual module (see below),

(3) Z is multiplicative.

We now elaborate on the precise meaning of the axioms. (1) means first

that an ariantatinn nracamring Aiffaamarnhiom £ 4 B! indnrcee an  isnmornhism
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