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THE PLAN

By abelianization in classical Chern-Simons | mean a relation between

e classical GLNyC Chern-Simons theory on M
e classical GL1C Chern-Simons theory with defects on M

where M is an N-fold branched cover of M.
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It is a classical version of a proposal of Cecotti-Cordova-Vafa. More
generally, it is close to the circle of ideas around QFTs of "class R" and 3d-3d
correspondence (Dimofte, Gaiotto, Gukov, Terashima, Yamazaki, Kim, Gang,

Romo, ...).

Itis the same as the abelianization of Chern-Simons studied by Beasley-
Witten or Blau-Thompson.



CLASSICAL GLxnC CHERN-SIMONS INVARIANT

Given a compact spin 3-manifold M, carrying a GLxC-connection V, there
is a (level 1) classical Chern-Simons invariant (action):

CS(M;V) € C*
fV=d+A,Ae QY (M;glyC), then

CS(M; V) = exp[i, f Tr (A AdA + zA ANAN A)]
411 I m 3

| will focus on the invariant for flat connections (critical points of the
action.)



CLASSICAL GLNC CHERN-SIMONS LINE

When M is a manifold with boundary, CS(M; V) is not quite a number,
because the integral is not gauge invariant.

Instead, it is an element of a line CS(dM; V), determined by V|,;.

CSMT) € Cs (M V)

If M’ is a closed 2-manifold, we have a line CS(M’; V) for each V over M’;
they fit together to Chern-Simons line bundle over the moduli space of flat
GLnC-connections over M.



CLASSICAL GLNnC CHERN-SIMONS TFT

The classical Chern-Simons invariant for a compact 3-manifold M is the top
part of a 3-dimensional invertible spin TFT with GLNC symmetry:

dim M | CS(M; V)
3 e C*

2 € Lines

We will focus just on the 3-2 part, given by a functor

CS : Bordgy, spin — Lines



SHAPE PARAMETERS

I'm almost done reviewing, but let me recall one other fact about classical
Chern-Simons theory, on 3-manifolds.



SHAPE PARAMETERS

Suppose M is an ideally triangulated 3-manifold.
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Then (boundary-unipotent) flat SLyC-connections on M can be
constructed by gluing, using

1
g(N3 ~N)
numbers X; € C~ per tetrahedron.

[W. Thurston, Neumann-Zagier, ... for N = 2]
[Dimofte-Gabella-Goncharov, Garoufalidis-D. Thurston-Goerner-Zickert for

all N]

The X; have to obey algebraic equations ("gluing equations") over Z,
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SHAPE PARAMETERS

There is one case where the shape parameters have a well known geometric
meaning. [W. Thurston]

This is the case when V is the PSL(2, C) connection induced by a
hyperbolic structure on the ideally triangulated M.

In this case, each tetrahedron of M is isometric to an ideal tetrahedron in
the hyperbolic upper half-space.

The shape parameter is the cross-ratio of the 4 ideal vertices lying on the
boundary CP.



SHAPE PARAMETERS

When the GL(N, C)-connection V has shape parameters X;, one has a
formula of the sort

CS(M; V) = exp Z le(X)

2711

(Have to take care about the branch choices for Li,.)

[W. Thurston, Goncharov, Dupont, Neumann, ..., Garoufalidis-D. Thurston-
Zickert]



SHAPE PARAMETERS

One of the aims of this talk is to explain a different geometric picture of the
shape parameters X, and the dilogarithmic formulas for Chern-Simons
Invariants.

(Spoiler: the X; € C™ will turn out to be holonomies of a GL; C-
connection.)



(L1 C CHERN-SIMONS WITH DEFECTS

We consider GL1C Chern-Simons theory on spin manifolds M carrying
connections V, with two unconventional defects added.

ie, a functor

CS : Bord gi, spin — Lines

Bord GL,,spin IS @ bordism category of spin manifolds M, with GL1C-
connections plus defects.




(L1 C CHERN-SIMONS WITH DEFECTS

The theory involves a codimension 2 defect. This defect needs extra
"framing" structure on its linking circle: 3 marked points with arrows.

1D

In expectation values, these codimension 2 defects contribute a cube root
of unity for each %ﬂ twist of the framing, in the case where the arrows are
consistently oriented.



(L1 C CHERN-SIMONS WITH DEFECTS

The theory also has a codimension 3 defect, which is a singularity of the
manifold structure of M: its link is a T? rather than S?.

Each codimension 3 defect has 4 codimension 2 defects impinging.




(L1 C CHERN-SIMONS WITH DEFECTS

The connection V does not extend over the codimension 3 defect: it has
nontrivial holonomies over both cycles of the linking T.

The holonomies obey a constraint:
+ X4+ Xg =1

(The signs + depend on the spin structure.)



(L1 C CHERN-SIMONS WITH DEFECTS

For a surface M, with spin structure and flat GL1C-connection V,
CS(M; V) is the usual line of spin Chern-Simons theory.

When codimension-2 defects impinge on M, CS (M; V) is the usual line of
spin Chern-Simons, tensored with an extra line for each defect, depending

only on the "framing".



(L1 C CHERN-SIMONS WITH DEFECTS

At each codimension 3 defect we have a tiny torus boundary T.

)
To define the theory we need to specify an element
W e CS(T; V)
Luckily there is a natural candidate! Loosely
1
WV = cex (—.R X )
P 2711 (Xa)

where R is a variant of the Rogers dilogarithm,

R(z) = Lip(*z) — %log(l + 2)



THE DILOG IN GL{C CHERN-SIMONS

The equation

1

N exp(z—m,R(XA))

has two problems on its face:

e The RHS is not a well defined function, because R(z) is a multivalued
function: requires a choice of branch.
e The LHS is not a well defined function, because it is an element of

ﬁ(T; V): requires a choice of trivialization of the bundle underlying V.

%,

These two problems cancel each other out; on both sides, we need to
choose logarithms of £X 4 and + X5, and then the transformation law of R

matches the WZW cocycle for ﬁ(T; 7).



THE DILOG IN GL1C CHERN-SIMONS

This is a fun interpretation of the dilogarithm function:

It is a section of the spin Chern-Simons line bundle over the moduli of flat
(L1 C-connections on the torus, restricted to the locus

L= {+X,+Xp =1}  (C*)?

(In fact, itis a flat section; this determines it up to overall normalization.)



THE DILOG IN GL1C CHERN-SIMONS

From this point of view, 3-manifolds M where 9M is a union of tori relate
to dilog identities.

e.g. to get the five-term identity up to a constant, contemplate M = S3NL

o
@O

There exist flat connections V on M obeying X4 + Xg = 1 atall 5 torus
boundaries. Spin Chern-Simons theory gives an element

5
CS(M; V) e (X) CS(T;; Vir)
=1



which IS an abstract version ot the dilog identity.

POINT DEFECTS IN GL1C CHERN-SIMONS

These defects have appeared before: in the open topological A model.

Suppose the 3-manifold M is a Lagrangian submanifold of a Calabi-Yau
threefold Y.

We study the open topological A model on Y, with one D-brane on M.

1Y
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The open string field theory living on M is GL;C Chern-Simons theory plus
corrections from holomorphic curvesin Y ending on M. [Witten]



POINT DEFECTS IN GL; C CHERN-SIMONS
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The correction to the GL1C Chern-Simons action that comes from an
isolated holomorphic discis Lip (X), where X is the holonomy around the
boundary. [Ooguri-Vafa]

So our defects appear naturally in this context: they are the boundaries of
holomorphic discs (crushed to a point for technical convenience).



RELATING THE CHERN-SIMONS THEORIES

So far | described two versions of classical Chern-Simons theory, given as
functors

Bord ¢1, spin — Lines
Bordgy, spin — Lines

How are they related?



ABELIANIZED CONNECTIONS

There is a new bordism category Abel, fitting into a diagram:

Bord GLq,spin

/ N\
Abel Lines

N\ /

BordGLN,spin

This diagram commutes, ie, the two functors Abel — Lines are naturally
isomorphic.

A morphism or object of Abel is an

This means a GLyC-connection V over a manifold M, with a partial gauge
fixing where V looks "as simple as possible".



ABELIANIZED CONNECTIONS

In the bulk of M, parallel transports of V are permutation-diagonal: they
reduce to transports of a GL1C-connection V over a cover M.

'OO{>
O boO

Usually this cannot be done globally on M.

(e.g. imagine M = once-punctured torus: can't simultaneously diagonalize
monodromy on A and B cycles)



ABELIANIZED CONNECTIONS

We introduce a stratification of M (spectral network).

On codimension-1 strata (walls), we allow the gauge to jump by a unipotent
matrix.

N
-~

()

0 1
On codimension-2 strata, we allow a singularity around which M — Mis
branched.

/ 5‘:\
(Around this singularity, V has holonomy —1, and pullback spin structure

does not extend: need to make a Z» twist of V and the spin structure, to
cancel this.)



ABELIANIZED CONNECTIONS

On codimension-3 (points), we allow a singularity; its linking sphere looks
like:

There is no singularity of M or V here, but in the double cover M and V
have a codimension-3 singularity.



ABELIANIZED CONNECTIONS

A "proof" of our equivalence, without boundaries:

When we have an abelianized connection V, we can use its abelian gauges
to compute the Chern-Simons action.

2

CS(M; V) = exp[ 3

fTr(A/\dA+ A/\A/\A)]

4111

In the bulk, just use
Tr diag(al, ,CKN) =1+ '+ AN

to reduce this to

CS(M; V) = exp[4m f Tr (a A da)]

At the spectral network, this fails. Still, the walls do not contribute. Lower
strata do contribute: they produce the codimension-2 and codimension-3
defects.



EXAMPLES
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Time for examples.



TRIANGULATED 2-MANIFOLDS

Take a triangulated 2-manifold M, punctured at all the vertices. We can
equip it with a spectral network and a covering M — M.

Using this network, a generic V can be abelianized almost uniquely (in
finitely many ways). The holonomies of V around classes y € Hj (M, Z)
then give cluster coordinates determining V.

[Fock-Goncharov, Gaiotto-Moore-N]



TRIANGULATED 3-MANIFOLDS

Now say M is a triangulated 3-manifold.

Again there is a natural double cover M — M and spectral network.
[Cecotti-Cordova-Vafa]
The walls of the spectral network form the dual spine of the triangulation.

There is one codimension-3 defect in the center of each tetrahedron.



TRIANGULATED 3-MANIFOLDS

We can reinterpret the construction of flat SL,C-connections on M using
Thurston's shape parameters X; obeying gluing equations.

First, we construct a GL1C-connection V over M. The X; are its
holonomies.

Then, we build the (unique) corresponding V over M.



DILOGARITHM FORMULAS ON TRIANGULATED
3-MANIFOLDS

Our equivalence of Chern-Simons theories says
CS(M;V) = CS(M; V)
So, to get CS(M; V), we can compute in the GL1C theory on M.

The line bundle underlying V turns out to be globally trivial; choose a
trivialization. Then,

e the bulk of M contributes trivially, exp[ fM AN dA] =1,

e each codim-3 defect contributes a dilogarithm ¢; exp[ -R(X; )]
e codim-2 defects can contribute third roots of 1.

This recovers the dilogarithm formulas | reviewed before, for SL,C
(actually a slight generalization: we don't need an "orderable"
triangulation).



ABELIANIZATION IN NATURE

| explained that any time we have an abelianized connection we get an
equivalence of Chern-Simons theories.

This statement is most interesting when we have abelianized connections
arising in some natural way.

Natural examples are better understood in the 2-dimensional case than the
3-dimensional case, so let me start there.



ABELIANIZATION VIA WKB

Suppose M is a punctured Riemann surface.

On M we can consider meromorphic Schrodinger equations, aka SLj-
opers, locally of the shape

(02 - 172P(2) [¢p(2) = 0

Also higher-order analogues like S1.5-opers,

[ag 2Py (2)0, — %h‘2P§(z) + 1P, (z)] U(z) = 0

These equations give flat connections V over M (with singularities at
punctures).



ABELIANIZATION VIA WKB

In the exact WKB method for Schrodinger operators, one studies opers V by
building local WKB solutions, of the form: [Voros, ..., Koike-Schafke]

Y(z) = exp[h_1 j; Z A(h) dz]

where A(71) has the WKB asymptotic expansion (for Re i > 0)
A(h) = \J-P(z) + Ay + B Ay + -+

The local solutions 1(z) reduce V to a GL1C-connection V over the
spectral curve, a double cover of M, branched at turning points:

oM
v
_— — M\

M ={y*+P(z)=0cT'M




ABELIANIZATION VIA WKB

These local solutions exist in domains of M separated by Stokes curves;
these form a spectral network.

Crossing Stokes curves mixes the local solutions by unipotent changes of
basis (WKB connection formula).

So, the structure that comes automatically from WKB analysis of an oper s
that of an abelianized connection.



ABELIANIZATION VIA WKB

The combinatorics of such Stokes graphs are generally rather complicated.

N

SN\

R

Except for G = SL,C, they are not just captured by ideal triangulations.




ABELIANIZATION IN CLASS S

A variation of this story appeared in quantum field theories of class S.
These are 4-dimensional N = 2 theories, obtained by compactification of
six-dimensional (2, 0) SCFTs on a punctured Riemann surface M.

Such a theory has a canonical surface defect preserving N' = (2, 2) SUSY,
whose space of couplings is M.

This defect has a flat connection V in its vacuum bundle. (like ££*) This
connection is abelianized to a GL1C-connection V over the Seiberg-Witten

curve M. (UV-IR map). This is a powerful tool for studying the IR theory,
BPS states.

|Gaiotto-Moore-N]



ABELIANIZATION IN CLASS R?

There are 3-dimensional quantum field theories of class R, associated to 3-
manifolds M instead of 2-manifolds.

[Dimofte-Gaiotto-Gukov, Cecotti-Cordova-Vafa]

One may hope that the abelianization of complex classical Chern-Simons
which we have found has a natural interpretation here.

This could give a source of geometric examples of abelianizations over 3-
manifolds.



CONCLUSIONS
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| described a relation between two versions of classical complex Chern-
Simons theory:

e the GLNC theory over M,
e the GL1C theory with defects over the branched cover M.

This relation gives a new method of computing in the GLNC theory, and
naturally accounts for / extends some known facts about that theory.

It still remains to find a good source of examples of a geometric nature,
from class R or elsewhere.



