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The Dubrovin systems (or Frobenius manifolds) give a geometric
formulation of Witten-Dijkgraaf-Verlinde-Verlinde equations
governing deformations of 2D topological field theories.
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formulation of Witten-Dijkgraaf-Verlinde-Verlinde equations
governing deformations of 2D topological field theories.

In the poster, we propose a quantization of the Dubrovin systems,
and then explore its relation with quantum groups and
Gromov-Witten type theory.
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A linear system for a matrix valued function F(z, ul, ..., u")
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Here u = diag(u?, ..., u"), V(u) satisfies the Jimbo-Miwa-Ueno
PDEs (compatibility of the system).
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Dubrovin systems

A linear system for a matrix valued function F(z, ul, ..., u")
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Here u = diag(u?, ..., u"), V(u) satisfies the Jimbo-Miwa-Ueno
PDEs (compatibility of the system).

Stokes matrix: For any fixed u, the first equation has different
canonical fundamental solutions in different sectors on z-plane.

The Stokes matrix S(u) measures the jump phenomenon of
solutions.

Isomonodromicity: S(u) don't depend on w.



Isomonodromic KZ systems

We introduce a system of equations for a Ug®?[[A]]-valued function

F(

1
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OF <u®1 +h§2(u)> 5
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OF
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Here Q(u) satisfies a set of PDEs (compatibility of the system).
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We introduce a system of equations for a Ug®?[[A]]-valued function

F(z,ut,...,u"):
oF _(u®1 +hQ(u) =
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Here Q(u) satisfies a set of PDEs (compatibility of the system).

Quantum Stokes matrix: for any u, the element S;(u) € Ug®?[[A]]
measuring the jump phenomenon of solutions.

Theorem (Isomonodromicity)

Si(u) don't depend on u.
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Semiclassical limit (a way of letting A equal 0)

The semiclassical limit of the IKZ system gives rise to Dubrovin
systems, i.e.,

IKZ systems

=0 l

‘ Dubrovin systems‘

In particular, any solution F of the Dubrovin system has a natural
h-deformation Fj, = F + Fih+ Fh? + - - -
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The space of Stokes matrices of Dubrovin systems is identified
with a Poisson Lie group.
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The g-Stokes matrices of IKZ systems satisfy Yang-Baxter
equation.

uantum Stokes matrices
IKZ systems < Quantum groups
o | o |
5 Stokes matrices B A
Dubrovin systems ST ‘ Poisson Lie groups‘

Corollary (Boalch)

The space of Stokes matrices of Dubrovin systems is identified
with a Poisson Lie group.

Question: find a field theorietic interpretation.
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Symplectic actions on loop spaces

IKZ systems Solutions, ’Symplectic actions on H[[A]] ‘
h=0 l h=0 l

- luti - ;
’ Dubrovin systems‘ Solutions, ‘Symplecnc actions on loop space H ‘

e Following Givental, the solution F of a Dubrovin system is
viewed as a symplectic transformation on certain loop space H.

e We expect that the deformation F, = F 4 F1h + O(h?) via IKZ
system is a symplectic deformation of the transformation F on H.
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Refinement of Gromov-Witten type theory.

Solutions of Dubrovin systems have two deformation/quantization:
e hi-deformation via the IKZ system;
e c-deformation via Givental's quantization.

The conjecture can combine these two into a quantization with
two parameters. In terms of integrable hierarchies, the two
parameters £ and i may correspond respectively to the dispersion
and quantization parameters. It may be related to the prediction of
Li from the topological string theory.



Thank you very much!



