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Goal

The Dubrovin systems (or Frobenius manifolds) give a geometric
formulation of Witten-Dijkgraaf-Verlinde-Verlinde equations
governing deformations of 2D topological field theories.

In the poster, we propose a quantization of the Dubrovin systems,
and then explore its relation with quantum groups and
Gromov-Witten type theory.
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Dubrovin systems

A linear system for a matrix valued function F (z , u1, ..., un)

∂F

∂z
=

(
u

z2
+

V (u)

z

)
F ,

∂F

∂ui
= Vi (z , u) · F .

Here u = diag(u1, ..., un), V (u) satisfies the Jimbo-Miwa-Ueno
PDEs (compatibility of the system).

Stokes matrix: For any fixed u, the first equation has different
canonical fundamental solutions in different sectors on z-plane.
The Stokes matrix S(u) measures the jump phenomenon of
solutions.

Isomonodromicity: S(u) don’t depend on u.
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Isomonodromic KZ systems

We introduce a system of equations for a Ug⊗2[[~]]–valued function
F (z , u1, ..., un):

∂F

∂z
=

(
u ⊗ 1

z2
+ ~

Ω(u)

z

)
F ,

∂F

∂ui
= Ωi (z , u) · F .

Here Ω(u) satisfies a set of PDEs (compatibility of the system).

Quantum Stokes matrix: for any u, the element S~(u) ∈ Ug⊗2[[~]]
measuring the jump phenomenon of solutions.

Theorem (Isomonodromicity)

S~(u) don’t depend on u.
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Semiclassical limit (a way of letting ~ equal 0)

Theorem

The semiclassical limit of the IKZ system gives rise to Dubrovin
systems, i.e.,

IKZ systems

~=0

y
Dubrovin systems

In particular, any solution F of the Dubrovin system has a natural
~-deformation F~ = F + F1~ + F2~2 + · · ·.
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Quantum Stokes matrices and Yang-Baxter equations

Theorem

The q-Stokes matrices of IKZ systems satisfy Yang-Baxter
equation.

IKZ systems
quantum Stokes matrices−−−−−−−−−−−−−−−→ Quantum groups

~=0

y ~=0

y
Dubrovin systems

Stokes matrices−−−−−−−−−→ Poisson Lie groups

Corollary (Boalch)

The space of Stokes matrices of Dubrovin systems is identified
with a Poisson Lie group.

Question: find a field theorietic interpretation.
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Symplectic actions on loop spaces

IKZ systems
Solutions−−−−−→ Symplectic actions on H[[~]]

~=0

y ~=0

y
Dubrovin systems

Solutions−−−−−→ Symplectic actions on loop space H

• Following Givental, the solution F of a Dubrovin system is
viewed as a symplectic transformation on certain loop space H.

• We expect that the deformation F~ = F + F1~ + O(~2) via IKZ
system is a symplectic deformation of the transformation F on H.

7 / 9



Symplectic actions on loop spaces

IKZ systems
Solutions−−−−−→ Symplectic actions on H[[~]]

~=0

y ~=0

y
Dubrovin systems

Solutions−−−−−→ Symplectic actions on loop space H

• Following Givental, the solution F of a Dubrovin system is
viewed as a symplectic transformation on certain loop space H.

• We expect that the deformation F~ = F + F1~ + O(~2) via IKZ
system is a symplectic deformation of the transformation F on H.

7 / 9



Symplectic actions on loop spaces

IKZ systems
Solutions−−−−−→ Symplectic actions on H[[~]]

~=0

y ~=0

y
Dubrovin systems

Solutions−−−−−→ Symplectic actions on loop space H

• Following Givental, the solution F of a Dubrovin system is
viewed as a symplectic transformation on certain loop space H.

• We expect that the deformation F~ = F + F1~ + O(~2) via IKZ
system is a symplectic deformation of the transformation F on H.

7 / 9



Refinement of Gromov-Witten type theory.

Solutions of Dubrovin systems have two deformation/quantization:

• ~-deformation via the IKZ system;
• ε-deformation via Givental’s quantization.

The conjecture can combine these two into a quantization with
two parameters. In terms of integrable hierarchies, the two
parameters ε and ~ may correspond respectively to the dispersion
and quantization parameters. It may be related to the prediction of
Li from the topological string theory.
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Thank you very much!
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